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Finite volume methods apply directly to the conservation law form of a differ-
ential equation system; and they commonly yield cell average approximations
to the unknowns rather than point values. The discrete equations that they
generate on a regular mesh look rather like finite difference equations; but
they are really much closer to finite element methods, sharing with them
a natural formulation on unstructured meshes. The typical projection onto
a piecewise constant trial space leads naturally into the theory of optimal
recovery to achieve higher than first-order accuracy. They have dominated
aerodynamics computation for over forty years, but they have never before
been the subject of an Acta Numerica article. We shall therefore survey their
early formulations before describing powerful developments in both their the-
ory and practice that have taken place in the last few years.
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1. Introduction

The comprehensive book by Quarteroni and Valli (1994) on the numerical
approximation of partial differential equations, which covers finite differ-
ence, finite element and spectral methods, devotes only its last eight pages
to finite volume methods. However, they do point out that these methods
are ‘very popular in computational fluid dynamics’ and use a terminology for
their various formulations which is consistent with that which we will use,
so that brief account provides a useful introduction to this survey article.

The term finite volume method seems to have appeared in the literature
only in the early 1970s (see, e.g., McDonald (1971) and Rizzi and Inouye
(1973)) when it was applied to methods used to approximate the hyper-
bolic conservation law system corresponding to the Euler equations of gas
dynamics; but the main ideas are much older. In Varga (1962) an integra-
tion method is used to derive finite difference approximations of self-adjoint
elliptic equations on a non-uniform rectangular mesh, which reflected stan-
dard practice in the nuclear industry at that time and could now be regarded
as a standard finite volume method. At about the same time, Preissmann
(1961) was advocating a box scheme for approximating the St. Venant equa-
tions of hydraulic flow which we now regard as one of the basic finite volume
schemes.

Consider the scalar conservation law for u(x, t),

ut + f(u)x = s(x, u), (1.1)

which has the form of the momentum equation of the St. Venant system.
In deriving a one-dimensional model of a river it is important to divide it
up into sections of varying length, each with fairly uniform properties. It
is also important to use an implicit time-stepping procedure because the
important flood waves typically travel much more slowly than the charac-
teristic waves that would define the CFL stability condition. So we integrate
the conservation law over a rectangular box in the (x, t)-plane, use Gauss’s
theorem to convert the volume integral on the left to an integral along the
boundary of the box shown in Figure 1.1(a), and use the trapezoidal rule to
approximate the resulting integrals. Using Un

j to denote our approximation
to u(xj , t

n), we obtain the following scheme, which we consider to be the
simplest form of a cell-vertex scheme:

1
2(xj+1 − xj)

[
Un+1

j+1 + Un+1
j − Un

j+1 − Un
j

]
(1.2)

+ 1
2(tn+1 − tn)

[
Fn+1

j+1 + Fn
j+1 − Fn+1

j − Fn
j

]

= 1
4(xj+1 − xj)(t

n+1 − tn)
[
Sn+1

j+1 + Sn+1
j + Sn

j+1 + Sn
j

]
,

where we have written Fn
j for f(Un

j ) with a similar notation for s.
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Figure 1.1. (a) The cell-vertex or Preissmann box scheme.
(b) The Godunov or cell-centre scheme.

An even earlier scheme, and one which has been the inspiration for many
finite volume methods, is that due to Godunov (1959) (see also Richtmyer
and Morton (1967, Section 12.15)) who developed it for application to the
Euler equations of gas dynamics. If we apply it to (1.1) with the mesh as
shown in Figure 1.1(b), the quantity Un

j now represents the cell average of

u(x, t) at time level tn in cell j, and F
n+1/2
j+1/2 an average between times tn

and tn+1 of the flux through the cell boundary at xj+1/2. This is normally
implemented as an explicit method so that, with cell length ∆xj = xj+1/2−
xj−1/2 and time step ∆tn = tn+1 − tn, we obtain

Un+1
j = Un

j − ∆tn
[(

F
n+1/2
j+1/2 − F

n+1/2
j−1/2

)
/∆xj − Sn

j

]
. (1.3)

To obtain the fluxes, the approximation at time level tn can be interpreted as
piecewise constant so that a Riemann problem is set up by the discontinuity
at each cell boundary: this is solved exactly or approximately to give the
flux. Such a scheme, when developed for two space dimensions, will be
called a cell-centre scheme.

A scheme of the form (1.3) may seem so obvious, simple and natural that
one may wonder why there have been so many alternatives in the literature
– even in the class of first-order, explicit schemes. A brief explanation
is in order here because it highlights the advantages of the finite volume
formulation. In the absence of a source term, we can sum (1.3) over any set
of contiguous cells, say l ≤ j ≤ r, to obtain the overall flux balance

r∑

j=l

∆xj(U
n+1
j − Un

j ) + ∆tn
[
F

n+1/2
r+1/2 − F

n+1/2
l−1/2

]
= 0. (1.4)

Such a property is crucial to the correct modelling of shocks, whose struc-
ture is determined by the conservation law rather than by any differential
equation derived from it. And it comes about as a result of two key choices,
for the individual fluxes and the mesh length. The calculation of the flux by
solving a Riemann problem at a cell boundary can be complicated, and for
systems of equations a closed form solution may not exist. So it is natural
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to try to make use of fluxes defined as Fn
j = f(Un

j ), as in a finite difference
formulation in which Un

j would be interpreted as a pointwise approximation
to u and the mesh length as a difference between the corresponding mesh
points. Then a simple explicit first-order scheme would make use of flux
differences and take one of the following forms,

Un+1
j = Un

j − ∆tn
[
Fn

j+1 − Fn
j

xj+1 − xj
or

Fn
j − Fn

j−1

xj − xj−1

]
. (1.5)

Stability, by the CFL condition, would require the choice to be determined
by the sign of the characteristic speed a(u) = f ′(u) to give a so-called
upwind scheme. But any switch between the two at a change in sign of a
would preclude the cancellation and collapse of the flux sum that occurs in
(1.4). Moreover, the summation on the left would not sensibly represent an
integral of U except in the case of a uniform mesh.

So we are driven to the finite volume formulation as above, with some
choice of the interface fluxes. The simplest such choice was given by Murman
and Cole (1971) and is the scalar form of a Roe-scheme (Roe 1981): it is

F
n+1/2
j+1/2 =

{
f(Un

j ) if an
j+1/2 ≥ 0,

f(Un
j+1) if an

j+1/2 < 0,
(1.6)

where an
j+1/2 = [f(Un

j+1) − f(Un
j )]/[Un

j+1 − Un
j ]. This scheme deals with

shocks very well; but unfortunately it treats smooth transitions, i.e., ex-
pansion waves where a(·) is increasing from left to right, in the same way
and hence gives a non-physical kink in the solution. This can be rectified,
but the theoretically preferred first-order scheme is due to Engquist and
Osher (1981) and takes the following form, where we write An

j = a(Un
j ) and

us is the sonic point at which a(us) ≡ f ′(us) = 0:

F
n+1/2
j+1/2 = 1

2

[
(1 + sgnAn

j )Fn
j + (sgnAn

j+1 − sgnAn
j )f(us)

+ (1 − sgnAn
j+1)F

n
j+1

]
. (1.7)

These two schemes, (1.6) and (1.7), have very important theoretical prop-
erties which we will refer to in later sections, and which make them very
important starting points for the development of higher-order schemes for
systems of equations in higher dimensions.

The partial differential equation problems that we shall consider in this
article will be of the general form

ut + divF(u,∇u) = s(x, t,u), u : (x, t) ∈ R
d × R

+ → u(x, t) ∈ R
m,

u(x, 0) = u0(x). (1.8)

We shall concentrate on two space dimensions, and many engineering prob-
lems are steady, in which case the time t will not be involved. In the purely
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hyperbolic cases, such as for the Euler equations of gas dynamics, the fluxes
F will be independent of the gradients ∇u so that we have a first-order
system of equations. Compressible gas dynamics is a key application area
for the methods, however, so that it is important that they are readily ap-
plicable to the compressible Navier–Stokes equations through the inclusion
of viscous flux terms. Another key feature of this field is that there is nor-
mally no source term s(x, t,u), with the shape of the boundary being the
key determinant of the flow.

The methods that we will describe will be applicable to quite general con-
servation laws of the form (1.8), but our discussion of them will frequently
use terms and ideas that derive from fluid dynamics, as has already been
the case. This is partly because this is the field with which we have most
experience, but also because of the enormous influence this field has had
on the development both of the mathematical models and their numerical
approximation – see the beautiful historical essay on this topic by Birkhoff
(1983).

Each of the finite volume schemes outlined above will meet new difficul-
ties when applied to problems in two space dimensions; and, as we shall
describe below, the extra dimension will lead to alternative variants. The
system of equations generated by the Preissmann box scheme applied to
the St. Venant equations describing one-dimensional river flow are gener-
ally solved by Newton iteration, exploiting the block tridiagonal form of
the Jacobian system. But this does not extend to two dimensions. Hence,
although the cell-vertex schemes have advantages in accuracy, the resulting
algebraic systems are more difficult to solve than those generated by alter-
native schemes. On the other hand, the cell-centre schemes clearly provide,
through their cell averages, only first-order approximations to the flow vari-
ables. Thus a very important aspect of these methods is the way in which
higher-order approximations are generated from such data as cell averages.
This comes within the general compass of optimal recovery (see Micchelli
and Rivlin (1977)) and a large part of this account will be devoted to this
topic. The general framework is as follows. Suppose that an unknown func-
tion is assumed to lie in a given function space and one is given the values of
a set of linear functionals evaluated for the function. What then is the best
estimate that one can make for the value of another linear functional? For
example, how does one recover the point values of a function from its cell
averages? The choice of mesh will also be crucial, especially in the neigh-
bourhood of complicated flow features such as shocks. We shall therefore
devote considerable attention to the topic of mesh adaptivity.

There is one final point that we wish to make in this Introduction. In
the vast literature on finite volume methods they have sometimes been gen-
erated as finite difference schemes, and sometimes as some sort of finite
element method. Given the flexibility and power of the latter methods in
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generating approximations on unstructured meshes, and the powerful theo-
retical framework in which they are formulated, we will below always regard
the schemes we describe as finite element methods: in particular, we shall
regard them as Petrov–Galerkin methods, in which the trial space may take
any form but the test space is composed of piecewise constant functions.
We will concentrate on algorithmic and theoretical aspects of the meth-
ods but will give sufficient numerical examples to demonstrate their power
and generality.

2. Systems of conservation laws

Although the finite volume methods that we will develop should be appli-
cable to the general conservation law form (1.8), most of their development
and study has been in the context of hyperbolic equations, that is, where
the fluxes F depend only on u. We will therefore concentrate on these
throughout this article, and begin by outlining the theoretical background;
for a more detailed exposition see Godlewski and Raviart (1991) or Smoller
(1983).

2.1. Hyperbolic systems

Consider the system of first-order conservation laws for u(x, t) ∈ R
m,

(x, t) ∈ R
d × R

+, with initial data u(x, 0) = u0(x), in which F =
(f1, f2, . . . , fm),

∂tu +
d∑

ℓ=1

∂xℓ
fℓ(u) = 0, (2.1)

where each flux vector fℓ is a C1-function. Then we can introduce the
corresponding Jacobians of the fluxes, which we will denote by Aℓ, so that
when the solution is smooth it satisfies the quasilinear system of equations

∂tu +

d∑

ℓ=1

Aℓ(u)∂xℓ
u = 0. (2.2)

This system is hyperbolic in a region G ⊂ R
m of the state space if every

linear combination of the Jacobians,

A(ννν) :=
d∑

ℓ=1

νℓAℓ(u), (2.3)

corresponding to a unit vector ννν = (ν1, ν2, . . . , νd)
T ∈ R

d, has m real eigen-
values and associated linearly independent eigenvectors for every u ∈ G. In
a later section we will describe methods which make use of this property
to approximate the time evolution of the solution: but for the moment we
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note only that it indicates how smooth data can evolve into a non-smooth
solution after a finite time. Consider for example the inviscid Burgers equa-

tion, namely ut + uux = 0. Its characteristics are given by dx/dt = u along
which u is constant, so they are straight lines; so where the initial data is
a decreasing function of x it will form a front which will steepen until it
breaks to form a shock.

It is therefore necessary to broaden the concept of what constitutes a
solution of the PDE problem. The weak form of the equation is derived by
multiplying (2.1) with a vector of test functions ϕϕϕ ∈ C1

0 (Rd × [0,∞))m and
integrating over a (d + 1)-dimensional sphere large enough to contain the
support of the test functions. Integration by parts then results in

∫

Rd×R+

[
u · ∂tϕϕϕ +

d∑

ℓ=1

fℓ(u) · ∂xℓ
ϕϕϕ

]
dx dt +

∫

Rd

u0(x) ·ϕϕϕ(x, 0) dx = 0. (2.4)

So a weak solution of (2.1) is one for which (2.4) is satisfied for all such
test functions; and L1

loc(R
d × R

+)m seems an appropriate space for such
solutions.

However, this is too large a space. For example, for Burgers’ equation
it would include all those containing a jump from a constant uL on the
left to a constant uR on the right; but only those with uL > uR are true
shocks which would evolve from smooth data or be the limits of solutions
to the viscous Burgers equation ut + uux = µuxx as the viscosity µ → 0.
Motivated by the equations of fluid dynamics, we therefore introduce the
concept of entropy. An entropy, for the equation (2.1), is a convex function
η : R

m → R for which there exists d scalar entropy fluxes qℓ such that the
following relations hold:

(∇uη)T Aℓ = (∇uqℓ)
T 1 ≤ ℓ ≤ d, (2.5)

for each u. Then it is clear that a smooth solution of (2.1) will also satisfy

∂tη(u) +
d∑

ℓ=1

∂xℓ
qℓ(u) = 0; (2.6)

that is, a further conservation law is satisfied. However, when dissipative
terms are added to the equations the convexity of η ensures that the left-
hand side of (2.6) is non-positive. Thus, when we take the limit as the
dissipation tends to zero, we obtain the following entropy condition for the
weak solution u: ∀ϕ ∈ C1

0 (Rd × R
+),

∫

Rd×R+

[
η(u)∂tϕ +

d∑

ℓ=1

qℓ(u)∂xℓ
ϕ

]
dx dt ≥ 0, (2.7)

the condition corresponding to the given entropy η and its associated flux
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functions. A weak solution u is called an entropy solution of the PDE
system if such an entropy condition is satisfied for all entropies possessed
by the system of equations.

We need to introduce just one further key characterization of solutions to
hyperbolic PDEs before we can state an important existence and uniqueness
theorem. If g is a real function defined on the open set Ω ⊂ R

d, and
g ∈ L1

loc(Ω), then its total variation is defined as

TVΩ(g) := sup

{∫

Ω
g divφφφdx, φφφ ∈ C1

0 (Ω)d, ‖φφφ‖L∞(Ω) ≤ 1

}
. (2.8)

Thus we introduce the notation for functions of bounded variation,

BV (Ω) :=
{
g ∈ L1

loc(Ω); TV (Ω(g) < ∞
}
.

The fact that the existence of smooth solutions to the Navier–Stokes
equations in R

3 is one of the Millennium Grand Challenge Problems of the
Clay Mathematics Institute – see Jaffe (2006) – shows that we are far from
having a comprehensive theory for such PDE problems. However, there is
one special case in which all the above concepts show their worth.

In the case of a scalar problem, m = 1 in (2.1), results obtained by Oleinik
(1957) and Krŭzkov (1970) enable us to state the following theorem.

Theorem 2.1. If m = 1 and the initial data u0 ∈ L1(Rd) ∩ L∞(Rd) ∩
BV (Rd) then (2.1) has a unique entropy solution u(·, t) ∀ t > 0, for which

‖u(·, t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd), (2.9)

TVRd(u(·, t)) ≤ TVRd(u0). (2.10)

This result is not only a valuable guide to the selection of numerical meth-
ods but it was also proved by taking the limit of approximations obtained
by their use. The concept of a total variation (TV )-stable numerical scheme
was introduced by Harten (1984), where he showed that for a scalar prob-
lem in one dimension any scheme that is consistent with the conservation
law and its entropy inequality gives a convergent approximation if it is TV-
stable. Second-order schemes with these properties were presented in that
paper and in Harten (1983), where the widely used concept of TVD (to-
tal variation diminishing) schemes was introduced. We note that the two
explicit finite volume methods introduced in Section 1, Roe’s scheme (1.6)
and the Engquist–Osher scheme (1.7), are TVD and stable under a very
natural CFL condition.

2.2. Haar’s lemma

Unfortunately, since finite volume schemes are based on using piecewise
constant test functions, they use an integral form of the PDE and it is
not at all clear a priori that this will single out the same solutions as the
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weak form. Suppose we introduce a control volume Ω ⊂ R
d with outward

normal n and surface measure dS. Then, to give a form which will be useful
later, we integrate the equation (2.1) over the (d + 1)-dimensional cylinder
(t, t + ∆t) × Ω and apply Gauss’s theorem to obtain

∫

Ω
[u(t + ∆t) − u(t)] dΩ +

∫ t+∆t

t

∮

∂Ω
F · n dS dt = 0. (2.11)

For the present purposes, however, it is convenient to work with a more
general (d + 1)-dimensional control volume Ωe obtained by extending the
x-variable to xe = (t, x1, x2, . . . , xd)

T and similarly n to ne and dS to dSe:
then we can take advantage of the (d + 1)-dimensional divergence form of
(2.1) to write the more general integral form as

∮

∂Ωe

(
u

F(u)

)
· ne dSe = 0. (2.12)

Haar’s lemma is the general name given to statements which link the weak
form (2.4) with this integral form of the PDE: the name derives from the
early result given by Haar (1919).

The work of Morrey (1960) (see Klötzler (1970)) can be used to give the
following result.

Theorem 2.2. Suppose that u and the d fluxes fℓ are summable over the
bounded region G ⊂ R

d × R
+. Then

∮

∂C

(
u

F(u)

)
· ne dSe = 0,

for almost all cuboids C ⊂ G, if and only if

∫

G

(
u

F(u)

)
· ∇∇∇ϕϕϕ dxe ≡

∫

G

[
u · ∂tϕϕϕ +

d∑

ℓ=1

fℓ(u) · ∂xℓ
ϕϕϕ

]
dx dt = 0

for every ϕϕϕ which vanishes on or near ∂G and is uniformly Lipschitz-con-
tinuous on G.

The same result has been proved for balls instead of cuboids; and, by using
a generalized divergence operator due to Müller (1957), Bruhn (1985) has
extended it to quite general control volumes. Thus it is this that we exploit
when developing finite volume methods by integration of the conservation
laws over quite general shapes.

2.3. Euler and Navier–Stokes equations

In two space dimensions, the Euler equations for inviscid compressible gas
flow have the form (2.1), expressing the conservation of mass, the two com-
ponents of momentum and the total energy. We write them in terms of
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the density ρ, the two velocity components v := (v1, v2)
T , the pressure

p, the total energy per unit mass E and the enthalpy which is defined by
H := E + p/ρ. Then we have the following definitions of u and the flux
vectors fℓ:

u :=




ρ

ρv1

ρv2

ρE


, f1(u) :=




ρv1

ρv2
1 + p

ρv1v2

ρv1H


, f2(u) :=




ρv2

ρv1v2

ρv2
2 + p

ρv2H


.

These need to be supplemented by an equation of state giving the pressure
in order to close the system: for an ideal gas this is taken to be

p = (γ − 1)ρ
(
E − 1

2 |v|2
)
, (2.13)

where γ denotes the ratio of specific heats; in the case of dry air it is taken
as γ = 1.4.

As these equations have played such an important role in the development
of finite volume methods we will describe their key properties in some detail.
The Jacobians of the flux functions have the following form, in terms of the
same variables:

A1(u)=




0 1 0 0
γ−3

2 v2
1 + γ−1

2 v2
2 (3 − γ)v1 (1 − γ)v2 γ − 1

−v1v2 v2 v1 0

(γ − 1)v1|v|2 − γv1E γE − γ−1
2 (v2

2 + 3v2
1) (1 − γ)v1v2 γv1




and

A2(u)=




0 0 1 0

−v1v2 v2 v1 0
γ−3

2 v2
2 + γ−1

2 v2
1 (1 − γ)v1 (3 − γ)v2 γ − 1

(γ − 1)v2|v|2 − γv2E (1 − γ)v1v2 γE − γ−1
2 (v2

1 + 3v2
2) γv2


.

These can be written in alternative forms and have several important fea-
tures. We note first that if we form a linear combination as in (2.3), cor-
responding to the direction ννν = (ν1, ν2)

T , and introduce the sound speed

c :=
√

γp/ρ, then A(ννν) is diagonalizable with eigenvalues v · ννν (occurring
twice), v · ννν − c and v · ννν + c. Thus the system is hyperbolic, so long as the
density and pressure remain positive, and we will give expressions for the
eigenvectors of A(ννν) below.

The first remarkable property of the Euler equations that we note is their
rotational invariance. Using the rotation matrix T (n), written in terms of
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the unit vector n = (n1, n2)
T as

T (n) :=




1 0 0 0
0 n1 n2 0
0 −n2 n1 0
0 0 0 1


,

it is easy to check that the Euler equation fluxes satisfy

2∑

ℓ=1

fℓ(u)nℓ = T−1(n)f1(T (n)u).

We can take direct advantage of this in an integral form comparable with
that in (2.11): if we do not carry out the time integration we obtain

d

dt

∫

Ω
u dx +

∮

∂Ω
T−1(n)f1(T (n)u) ds = 0. (2.14)

Another property of the equations that is exploited by some numerical
schemes is that the fluxes are homogeneous functions of degree 1 of the
conservative variables. This is obvious for some of the terms but, for ex-
ample, we can write the second term in the vector f1 as u2

2/u1 + p and
p = (γ − 1)[u4 − 1

2(u2
2 + u2

3)/u1]. It follows that the fluxes satisfy Euler’s

relation so that
fℓ(u) = Aℓ(u)u, ℓ = 1, 2. (2.15)

This means that for smooth solutions it does not matter whether the Ja-
cobian matrices are included in the spatial differentiation in (2.2) or not:
∂xℓ

(Aℓu) = Aℓ∂xℓ
u.

Where solutions are smooth it is often convenient to write the equations
in terms of the so-called primitive variables ρ, v1, v2 and p. If we form
these into the vector w the gradient matrix defining the change of variables
∇wu =: M is given by

M =




1 0 0 0

v1 ρ 0 0

v2 0 ρ 0
1
2 |v|2 ρv1 ρv2 (γ − 1)−1


. (2.16)

As this is lower triangular, its inverse can be written down immediately and
thence the new coefficient matrices, which we denote by Bℓ := M−1AℓM ,
can be derived to give the following:

B1(w) :=




v1 ρ 0 0

0 v1 0 ρ−1

0 0 v1 0

0 ρc2 0 v1


, B2(w) :=




v2 0 ρ 0

0 v2 0 0

0 0 v2 ρ−1

0 0 ρc2 v2


.

(2.17)
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Note that we have here used the fact that the sound speed is given by
c2 = ∂p/∂ρ. Clearly these matrices have a very much simpler form than for
the conservative form, and make the calculation of the eigenvalue structure
of the system much easier to carry out.

It is an important property of these systems, which is shared by the two-
dimensional wave equation system, that the two Jacobian matrices do not
commute, so that although any linear combination of them can be diagonal-
ized they cannot be simultaneously diagonalized. With the usual notation
B(ννν) = ν1B1 + ν2B2, and denoting the matrix of its right eigenvectors by
R(ννν), we have BR = RΛ, where Λ = diag(v · ννν,v · ννν,v · ννν − c,v · ννν + c) is
the diagonal matrix of eigenvalues and

R(ννν) :=




ν1 0 ρ/2c ρ/2c

0 ν2 ν1/2 −ν1/2

0 −ν1 ν2/2 −ν2/2

0 0 ρc/2 ρc/2


. (2.18)

It is then straightforward to obtain the eigenvectors of A(ννν) through use of
the transformation matrix M : see Hirsch (1990) for details. This form of
the equations has been used in the development of finite volume evolution
Galerkin methods, which will be described in Section 4.3.

Another form of the equations which is very important from both a the-
oretical and a practical point of view will be described in Section 6. This
makes use of so-called entropy variables to symmetrize the equations: that
is, to write them as a symmetric hyperbolic system, in the linearized form
(2.2) but with a matrix A0 multiplying the time derivative term, in which
the three coefficient matrices are symmetric.

A key parameter in the Euler equations is the Mach number given by
Ma := |v|/c: when and where it is less than unity the flow is subsonic, and
where larger than unity it is supersonic. For steady flows in more than one
space dimension, the Euler equations are elliptic where the flow is subsonic
and hyperbolic where it is supersonic; and this is the source of some of
the characteristic challenges posed by both the analysis of the equations
and their numerical modelling. Thus, for most commercial aeroplanes in
steady flight, the oncoming flow relative to the aeroplane is subsonic; but it
accelerates smoothly around the leading edges to form a supersonic patch
which terminates in a shock. Such a flow is termed transonic, an example
of which is shown later in Figure 6.4.

The Euler equations result from neglecting the effects of viscosity and heat
conduction in models of compressible fluid flow. Their inclusion changes the
structure of the equations from being purely hyperbolic, and leads to some
form of the Navier–Stokes equations. We will outline here the form of these
changes; for more details the reader should consult texts such as Hirsch
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(1988). With the extra flux terms the equations take the following form:

∂tu +
2∑

ℓ=1

∂xℓ

[
fℓ(u) − 1

Re
gℓ(u)

]
= 0, (2.19)

where

gℓ :=




0

τ1,ℓ

τ2,ℓ

v1τ1,ℓ + v2τℓ,2 + µγ
Pr ∂xℓ

ǫ


, ℓ = 1, 2.

Here the extra terms are controlled by the two parameters, the Reynolds
number Re and the Prandtl number Pr, which is a thermodynamic property
of the gas equal to 0.72 for air. The terms in the viscous stress tensor are
given by τi,j := µ

(
∂xj

vi + ∂xi
vj

)
+ δj

i λ
(
∂x1

v1 + ∂x2
v2

)
, where δj

i is the
Kronecker delta symbol. The coefficient µ is the viscosity and, by Stokes’
hypothesis, we set λ = −2

3µ. The heat conduction is given above in terms

of the specific internal energy, defined by ǫ = E − 1
2 |v|2. The key coefficient

is that for viscosity, which is typically assumed to be given in terms of
the temperature T by Sutherland’s law µ = T 1.5(1 + S)/(T + S), where
T = γ(γ−1)(|v|/c)2ǫ and S := 110◦K/T∞ and T∞ denotes the temperature
at infinity.

The details of these formulae are unimportant for our present purposes.
The points to note are the structure of the extra terms and the heavy
dependence on the computed variables and their gradients. The implication
is that in a finite volume method it is most important to have accurate and
reliable recovery procedures which, typically from cell averages, can produce
both point values and gradients of the dependent variables. In addition,
many schemes will combine the inviscid and viscous fluxes, as shown in
(2.19), so that they can build on the finite volume techniques developed for
convection-diffusion problems: see, e.g., Morton (1996).

Well-publicized test problems have played an important role in the devel-
opment of numerical models for compressible flows: examples from the early
days include the one-dimensional shock tube problem of Sod (1978) and the
steady transonic flow past the NACA 0012 aerofoil: see Hirsch (1990). So we
conclude this section by showing the results of some Euler calculations for
another widely used model problem due to Woodward and Colella (1984).
This concerns the supersonic flow of a gas past a forward-facing step, the
details of which will be given in a later section. Two triangular meshes
are used: a coarse mesh of 2016 triangles and a finer mesh of 8064 trian-
gles, both shown in Figure 2.1. In Figure 2.2 we show contour plots of the
Mach number obtained with the coarse mesh (above) and with the fine mesh
(below), using two finite volume methods: on the left the plot is obtained
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Figure 2.1. Coarse and fine grid for the Woodward and Colella test case.

Figure 2.2. Mach number distribution on the coarse mesh (above) and
on the fine mesh (below). Numerical scheme of Steger and Warming
(left) and Osher and Solomon (right).
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with a method due to Steger and Warming (1981), which generalizes that
shown in (1.6) by exploiting the homogeneous property of the fluxes referred
to above; and on the right the plot is obtained with a method due to Osher
and Solomon (1982) which generalizes the Engquist–Osher scheme given in
(1.7). Apart from the obvious improvement on the finer mesh, it is clear
that the second scheme captures more details of the flow, though the two
are of the same formal accuracy. We shall see later that the difference be-
tween these two schemes lies not so much in their starting points but in the
way they generalize from the scalar problem to a system of equations: the
former is an example of a flux-vector splitting method and the latter of a
flux-difference splitting method.

3. Finite volume formulations

There are so many finite volume schemes applied to such a variety of prob-
lems, in both the engineering and the numerical analysis literature, that we
have to be quite selective in this review. We will concentrate on formula-
tions that are tailored to the needs of the Euler equations of aeronautical
gas dynamics because this is the field that has stimulated the most impor-
tant developments; and we will focus on two space dimensions. However, we
will refer to other fields and to three space dimensions when making choices
about the methods that we describe in detail.

Many of the engineering and design problems in aeronautics concern
steady flows; and even in the unsteady problems the rates of change are
often very slow when compared with the characteristic sound speed. Thus
the approximation employed in the spatial variables is usually quite distinct
from that used for the time variable. Advantage can be taken of a finite
element formulation in the spatial variables, usually of the Petrov–Galerkin
form with the test space different from the trial space. With these points
in mind, we will first review some of the choices that have to be made.

3.1. Overall view of alternatives

Triangles vs quadrilaterals. In early two-dimensional calculations of flows
around aerofoils quadrilateral meshes were very popular: they are easy to
generate and they have the nice property that, globally, there are the same
number of vertices as cells. This has an advantage for a cell-vertex formu-
lation, which is preferred on the grounds of accuracy on a stretched mesh
(see Morton and Paisley (1989)); and such an approach is readily extended
to approximating the Navier–Stokes equations (Crumpton, Mackenzie and
Morton 1993). However, triangular meshes are more flexible in modelling
complicated geometries and much easier to generalize to three dimensions.
So our emphasis will be on triangles, with such meshes often being referred
to as unstructured: see Figure 3.1.
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(a) Cell-centre triangular (b) Cell-centre quadrilateral

(c) Cell-vertex triangular (d) Cell-vertex quadrilateral

Figure 3.1. Some typical finite volume meshes.

Cell-centre vs cell-vertex. In the former the unknowns are associated with
the centres of the cells which act as the control volumes, as indicated in Fig-
ure 3.1(a) and (b); while in the latter the unknowns are associated with the
vertices of the control volumes, as indicated in Figure 3.1(c) and (d). Thus,
in a cell-vertex scheme the basic approximation would naturally be linear
on a triangle and bilinear on a quadrilateral, while from a finite element
viewpoint the test function would be piecewise constant. The local approx-
imation can be good but difficulties can arise in setting up and solving the
overall system of equations. In a cell-centre scheme the unknowns usually
represent cell averages, so the local approximation is piecewise constant.
Thus from a finite element viewpoint the test and trial spaces are the same,
which simplifies setting up the equations: one merely has to interpret the
very low-order approximations appropriately. In this respect they can be
regarded as early forms of discontinuous Galerkin methods: see Cockburn,
Karniadakis and Shu (2000).

Node-centred schemes. This is a third alternative, sometimes called box

schemes, in which the control volumes are centred on the vertices of the
primary mesh. When the primary mesh is quadrilateral, then the new mesh
can be the same and there is then little difference from corresponding cell-
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vertex schemes. But when the primary mesh is triangular, the secondary
mesh control volumes are often constructed by joining the centroids to the
mid-sides of the primary mesh – as shown in Figure 3.3 – although there are
alternative choices for the box shape. This third choice turns out to have
several advantages, which we will describe in the course of this article.

Semi-discrete vs time-integrated. In the former approach, often called the
method-of-lines approach, approximations to only the spatial operators are
sought so that an ODE solver then has to be applied to the resulting system
of equations. At the other extreme, as in the box scheme of (1.2), integration
over time is included in the finite volume formulation. Most commonly some
intermediate approach is adopted: we will consider both extremes and relate
them to some of the many alternatives.

3.2. Cell-centre schemes and node-centred schemes on triangles

We consider the approximation of the Euler (and later the Navier–Stokes)
equations on a bounded open domain Ω ⊂ R

2. For the sake of simplicity
we assume that the boundary ∂Ω := Ω\Ω is already a polygon. On Ω we
establish two types of tesselations, a primary and a secondary mesh or grid.

A triangulation T h of Ω is the set of finitely many triangular subsets
Ti ⊂ Ω, i = 1, . . . , #T , such that the following conditions are satisfied:

• Ω =
⋃

i∈{1,...,#T} Ti,

• every Ti ∈ T h is closed and non-empty,

• for two Ti, Tj ∈ T h with i �= j their interiors satisfy
◦
T i ∩

◦
T j= ∅.

A triangulation is called conforming if the following additional condition
holds:

• every one-dimensional edge of any Ti ∈ T h is either a subset of ∂Ω or
the edge of another Tj , j �= i.

The parameter h in the notation T h corresponds to a typical geometrical
length scale of the triangulation which may be represented by the length of
the longest edge.

Note that conformity ensures that there can be no hanging nodes, i.e.,
vertices lying in the interior of an edge of another triangle. Although con-
formity is not necessary in the context of finite volume approximations, it
helps to simplify nearly every algorithmic detail, especially in the case of
grid adaptivity. The definition of a triangulation given here is identical to
that used in finite element methods: see Ciarlet (1987). We call such a
conforming triangulation T h a primary grid.

A barycentric subdivision can be used to define a secondary grid. Let

Kh,i := {T ∈ T h | node i is vertex of T}
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be the set of all triangles of a primary grid sharing node i. Denote the
three edges of triangle T by eT,k, k = 1, 2, 3. For each T ∈ T h consider the
following barycentric subdivision: join the barycentre or centroid of T with
the mid-points of its three edges eT,k, k = 1, 2, 3. This divides each triangle
into three segments, as shown in Figure 3.2. The union of all those segments

Figure 3.2. Barycentric subdivision of a triangle.

of T ∈ Kh,i adjacent to node i is called the box Bi around node i. If node
i belongs to the boundary ∂Ω the box is constructed with the two halves
of the boundary edges of the boundary triangles having node i in common.
The union Bh :=

⋃
i=1,...,#B Bi of all the boxes is called the secondary grid.

An example of a primary and secondary grid is shown in Figure 3.3; this
includes the situation at the boundary.

Figure 3.3. Primary and secondary grid for a node-centred scheme.

We next construct cell-centre finite volume approximations on such grids
for systems of the type (2.1); we postpone consideration of the viscous fluxes
to later in the section. We need the notion of the neighbourhood of a triangle
Ti: so we denote the set of indices of its neighbouring triangles by

N(i) := {j ∈ N | Ti ∩ Tj is an edge of Ti}.
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Then we integrate the conservation law over the control volume formed by
the triangle Ti to obtain

d

dt
A(Ti)u(t) = − 1

|Ti|
∑

j∈N(i)

∫

∂Tj∩∂Ti

2∑

ℓ=1

fℓ(u)nij,ℓ dσ, (3.1)

where we denote by A(Ti)u(t) the average of u(t) over the triangle. Here
the outer (with respect to Ti) unit normal vector at the edge ∂Ti ∩ ∂Tj is
denoted by nij = (nij,1, nij,2)

T , and |Ti| is the area of the triangle.
To allow maximum flexibility in the development of numerical schemes

from this formula we replace the edge integrals by Gaussian quadrature
formulae, which will assume a certain degree of smoothness. If we denote
by xij− and xij+ the coordinates of the vertex points of ∂Ti ∩∂Tj , the edge
is parametrized by s ∈ [−1, 1] such that the general point on the edge is

xij(s) := 1
2 [(1 − s)xij− + (1 + s)xij+],

and this can be introduced in the evolution equation (3.1) on Ti. Suppose
we denote the number of Gauss points on ∂Ti∩∂Tj by nG, the actual Gauss
points by xij(sν), ν = 1, . . . , nG, and the weights by ων , then we get the
system

d

dt
A(Ti)u(t) = (3.2)

−
∑

j∈N(i)

|∂Ti ∩ ∂Tj |
2|Ti|

{
nG∑

ν=1

2∑

ℓ=1

ωνfℓ(u(xij(sν), t))nij,ℓ + O
(
h2nG

)
}

.

The lowest-order scheme corresponds to the mid-point rule and, although
we will concentrate on this form of quadrature, it is clearly a simple matter
to replace it by the trapezoidal rule, Simpson’s rule or some other choice.

The first step in deriving a corresponding numerical approximation is to
introduce Ui(t) as an approximation to A(Ti)u(t). Then the crucial step is
to choose a formula giving a numerical flux function that generalizes that
given in (1.6) for the Roe scheme or (1.7) for the Engquist–Osher method.
Because it takes the form of a mapping

(uL,uR;n)
H�−→ H(uL,uR;n) ∈ R

m

from two constant states to a flux, in a direction n, it is also called an
approximate Riemann solver. Note that we will use these terms quite gen-
erally to refer to any choices for such a mapping, even to make comparisons
with, e.g., Lax–Friedrichs or Lax–Wendroff difference schemes. The essen-
tial condition it has to satisfy is a consistency condition with the differential
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equation,

∀u ∈ R
m : H(u,u;n) =

2∑

ℓ=1

fℓ(u)nℓ. (3.3)

Because of this condition we can replace one of the sums over the fluxes
in (3.2) by the corresponding H function. But more importantly, with the
additional choice of a one-point quadrature rule, it leads to the following
definition of the basic cell-centre finite volume scheme:

Find Ui(t), i = 1, . . . , #T, t ∈ [0, t∗], t∗ > 0, as a solution of the system of

ordinary differential equations

d

dt
Ui(t) = − 1

|Ti|
∑

j∈N(i)

|∂Ti ∩ ∂Tj |H(Ui(t),Uj(t);nij), (3.4)

Ui(0) = A(Ti)u(0).

After a discretization in time this will form the basis of all the cell-centre
finite volume schemes on triangular meshes that we shall discuss. The sim-
plest time discretization is obtained with the explicit Euler scheme. Then
we will have a direct generalization of (1.3) to systems of conservation laws
in two dimensions. Such a choice will lead to a stability limit on the time
step, which is in the form of a CFL condition (Courant, Friedrichs and
Lewy 1928). In the scalar one-dimensional case, this requires that no char-
acteristic can cross more than one cell in one time step: in the notation of
Figure 1.1(b) this becomes

−∆xj−1 ≤ f ′(u)∆t ≤ ∆xj for u between Un
j−1 and Un

j , ∀j. (3.5)

For both the Roe flux (1.6) and the Engquist–Osher flux (1.7), it is shown in
Morton (2001) that this condition is sufficient as well as necessary for stabil-
ity. However, it is clear that such a condition will become more restrictive
and more complicated in two dimensions on a triangular mesh. Other more
sophisticated time discretizations are therefore needed, some of which will
be described in Section 4.4.

One cannot expect to obtain better than first-order accuracy with a
scheme that only uses a piecewise constant approximation to the unknown
solution. To do better we introduce a recovery step: this produces a higher-
order approximation Ũ(t) which preserves the cell averages,

A(Ti)Ũ(t) = Ui(t), i = 1, . . . , #T ;

and the values of this function at the quadrature points are then substituted
into the calculation of the numerical flux functions in (3.4). The details of
how this is done will be described in Section 5 but we will introduce some
of the ideas here.
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For the one-dimensional scheme (1.3), an approach that has led to the
popular MUSCL algorithms introduced by van Leer (1979) makes use of
discontinuous linear recovery for each variable: since the average is to be
preserved in a cell, one need only choose a slope Sj for the variable in each
cell. This is usually obtained by combining the divided differences D+Uj

and D−Uj between the average in the cell and those to its right and left, but
it is important to impose some restrictions on how this is done. Thus in the
case of a scalar conservation law it is easily deduced from the TVD property
(2.10) that monotone initial data remains monotone. Hence if a set of cell
averages form a monotone sequence this property should be preserved and
this makes the choice of recovery algorithm far from trivial even in this case.
For example, suppose that the recovered function in cell j is given by

Ũ(x) = Uj + Sj(x − xj), (3.6)

where xj is the centre of the cell. Then one might aim to ensure that

whenever the sequence Uj is monotone increasing, then so is Ũ(x); and it is
easily seen that a sufficient condition for this is to have

0 ≤ Sj ≤ min(D+Uj , D−Uj) ∀j.

Formulae for Sj based on such considerations are referred to as slope lim-

iters, with the best-known being that given by the minimum of |D±Uj | and
called the minmod limiter :

minmod(x, y) :=

{
smin(|x|, |y|) if sgnx = sgn y = s,

0 otherwise.
(3.7)

However, such a choice is rather conservative, and could lead to clipping of
local extrema, so many alternatives have appeared in the literature, a topic
we will return to in Section 4.6 on ENO schemes. Meanwhile, a necessary
condition for preserving a monotone increasing function that we will refer
to later (and that originally suggested by van Leer) is the following:

Uj−1 ≤ Uj − 1
2Sj∆xj and Uj + 1

2Sj∆xj ≤ Uj+1; (3.8)

that is, the variation in the cell does not go beyond the averages in its
neighbours.

To generalize this approach to a triangular mesh, we need to calculate a
gradient for a variable in each cell from the cell averages in neighbouring
cells. One way to do this is to use the general formula for obtaining an
average gradient of a variable over a region Ω from values on its perimeter,

A(Ω)∇u =
1

|Ω|

∫

∂Ω

[
u dx2

−u dx1

]
,

and applying this to the secondary grid cell around each vertex. This gives a
choice of three gradients for each triangle. An alternative due to Durlofsky,
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Figure 3.4. Mach number distribution on the coarse mesh (above) and
on the fine mesh (below) for the Woodward and Colella test case.
Numerical scheme of Steger and Warming (left) and Osher and
Solomon (right), both with linear recovery.

Engquist and Osher (1992) is a direct generalization of the TVD construc-
tion in one dimension. It makes use of the three neighbouring triangles, i.e.,
those in N(i), which is often called the von Neumann neighbourhood of Ti.
From any pair we can construct a linear function whose averages over the
pair and Ti match the corresponding values of U . Again this gives a choice
of three gradients.

One needs to combine or choose between these gradients in some way, for
each component of U, and then calculate the numerical fluxes along each
edge of the triangular mesh, where the variables are not only discontinuous
but also non-constant; and this should be done in such a way as to utilize
known properties of the differential equation system, such as monotonicity
preservation or the TVD property. For example, choosing the gradient of
a variable with smallest absolute value except at an extremum would be a
direct generalization of the minmod limiter (3.7). However, this is rather
severe and generally more sophisticated choices are made: see Section 5.
These issues highlight the key principles of the recovery process: any known
properties of the unknown function u(t) can be exploited in constructing

the higher-order approximation Ũ(t); but its projection onto the lower-order
space has to be such as to reproduce U(t).

We illustrate the effectiveness of such algorithms by means of the forward-
facing step problem already referred to. In Figure 3.4 we show on the coarse
mesh (above) and the fine mesh (below) the results obtained after linear
recovery for the two schemes for which the corresponding results without
recovery were shown in Figure 2.2. They clearly show the improvement due
to the recovery, on both meshes.

We conclude this section by describing node-centred schemes on a tri-
angular mesh, which we will gradually see have several advantages over
the alternative cell-centre schemes, including the choice of a linear recovery
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Figure 3.5. Geometry between boxes Bi and Bj .

procedure. The piecewise constant approximation in this case is given by
the values Ui which represent averages over the boxes Bi centred on the
vertices and forming the secondary grid. It is then straightforward to con-
struct a piecewise linear function corresponding to each component variable
U on each triangle by choosing the three required nodal values so that the
average of the function over each box Bi corresponding to one of the nodes
matches Ui. Then each triangle yields a gradient of this function; and in
the box Bi we choose the gradient with the smallest magnitude from those
that correspond to triangles which share the node i, i.e., are in the set Kh,i.
Thus we obtain a discontinuous piecewise linear approximation to the vector
of unknowns which we denote by Ũ(t).

The node-centred update formula corresponding to (3.4) is a little more
complicated because the boundary of each box Bi has more segments: we
denote the set of indices of boxes that are neighbours to Bi by

NB(i) := {j ∈ N | Bi ∩ Bj is edge of Bi};
and the boundary between two neighbouring boxes consists of two segments
with different normals, as shown in Figure 3.5. Then, with the notation
shown in the figure and with one-point Gaussian quadrature at the corre-
sponding mid-points xk

ij of the segments, we obtain the system of ODEs

d

dt
Ui(t) = − 1

|Bi|
∑

j∈NB(i)

2∑

k=1

|lkij |H
(
Ũi(x

k
ij , t), Ũj(x

k
ij , t);n

k
ij

)
, (3.9)

Ui(0) = A(Bi)u(0). (3.10)

Choice of an integrator for this system completes the definition of the
method.
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With this scheme and its recovery procedure it is reasonably straight-
forward to include the viscous fluxes and thence approximate the Navier–
Stokes equations (2.19). We have linear approximations to each variable on
each triangle, so that their gradients are readily computed on each section
of the boundary of a box Bi; and since they are constant on each trian-
gle they are exactly integrated by any Gaussian quadrature rule. There
is just one snag. For realistic values of the Reynolds number (say, Re =
O
(
106

)
) it is necessary to have a highly stretched mesh near the boundary

of the domain, with long thin triangles aligned with the boundary; then
the normals to an edge of a box will point mainly towards and away from
the boundary, rather than along it. This is clearly inappropriate for the
inviscid fluxes. The remedy is to replace the barycentres of each triangle by
an appropriately weighted average of its vertex positions. Such a formula is
given by

xs =
∑

m∈{i,j,k}

αs
mxm where αs

m :=
1

2(|li| + |lj | + |lk|)
∑

m′∈{i,j,k}
m′ �=m

|lm′ |;

the effect on the mesh is illustrated in Figure 3.6.

xs
xs

Figure 3.6. Stretched grid cell for Navier–Stokes; deformed boxes on the right.

3.3. Cell-vertex schemes on quadrilaterals

We can subdivide a bounded open domain Ω ⊂ R
2, with a polygonal bound-

ary, into a set of quadrilaterals Qα ⊂ Ω, α = 1, . . . , #Q in exactly the same
way as the triangulation described in the previous subsection. We will also
assume it is conforming, in the same sense, and it is unnecessary to repeat
here the formal detailed specification of the subdivision. However, we now
use Greek subscripts α, β, . . . to refer to the quadrilaterals and reserve Ro-
man subscripts i, j, . . . to refer to their vertices, with which the variables
U will be associated. In addition we include the viscous fluxes from the
outset and seek a steady solution of the Navier–Stokes equations. So the
formulation will be much closer to a finite element approach to a steady
convection-diffusion problem: the distinction is that we limit the class of
test functions to piecewise constants on the quadrilaterals.
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i j

kl

Qα

Figure 3.7. Typical quadrilateral mesh for a cell-vertex approximation
to the Navier–Stokes equations, showing the vertices contributing to
the cell residual: solid circles where fluxes are calculated, open circles
at points needed for gradients.

A typical mesh is shown in Figure 3.7 with the cell Qα over which the
equations are to be integrated marked with solid circles. Thus, writing the
integral of the hyperbolic conservation law (2.1) over this cell in a similar
form to (3.1), we have

d

dt
A(Qα)u(t) = − 1

|Qα|

∫

∂Qα

[f1 dx2 − f2 dx1], (3.11)

where we have used the usual form for the boundary integral in two dimen-
sions; and we have a similar form for the Navier–Stokes equations (2.19).

The objective is to generate a scheme of second-order accuracy for the
steady problem and this can be achieved if each quadrilateral is within
O(h) of a parallelogram, i.e., the orientations of opposite sides differ by this
order, and this we will assume. Then the approximation can be regarded as
a bilinear form determined by the vertex values; and a recovery procedure
is needed only to calculate the gradients that appear in the viscous fluxes.
This may be done in several ways, but with this assumption on the mesh
it is best to do so by integrating over each cell to give the gradients at
the centroids, and then interpolating between these to obtain values at the
vertices.

Writing Ui for the approximation to u at the vertex xi, we use the more
compact notation in the Navier–Stokes equations (2.19),

Fi,ℓ = fℓ(U(xi)) − (1/Re)g
(r)
ℓ (U(xi))

where the superscript in g(r) signifies the fact that the recovered gradient
has been used in the calculation of the viscous fluxes. We also approximate
the boundary integrals of (3.11) by the trapezoidal rule. Then it is one of
the attractive features of the cell-vertex method in two dimensions that only
the components of the quadrilateral diagonals appear in the residual. So,
writing xij = xi−xj and with the vertex lettering in Figure 3.7, to solve the
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steady problem we seek to satisfy the cell residual equations, which become

Rα := 1
2

[
(Fi,1 − Fk,1)xjl,2 + (Fj,1 − Fl,1)xki,2 (3.12)

− (Fi,2 − Fk,2)xjl,1 − (Fj,2 − Fl,2)xki,1

]
= 0.

This is a difficult system to solve and, although some of the techniques
that are used are properly topics for the next section, several introductory
remarks are in order here.

The most direct approach to solving the system (3.12) would be to apply
Newton’s method, or a quasi-Newton method. And for the incompressible
Navier–Stokes equations or similar systems, and with closely related finite
element approximations, this is widely used very successfully: see, for ex-
ample, Winters, Rae, Jackson and Cliffe (1981). In addition, if the unsteady
problem were modelled by approximating in the same way the full diver-
gence form as in (2.12), we would have a system that directly generalizes
the box scheme of (1.2), which is very successfully used in conjunction with
Newton’s method in one-dimensional river flow modelling: see Cunge, Holly
and Verwey (1980). Aerodynamic applications involving high-speed com-
pressible flows pose much more severe problems, however, particularly in the
neighbourhood of shocks. Thus, even though some progress has been made
in using Newton’s method, as reported in Badcock and Richards (1995),
steady cell-vertex approximations have generally been obtained with iter-
ation schemes that relate closely to time-stepping; the one important dis-
tinction is that different time steps can be used at each point in order to
improve convergence rates. Nevertheless, in future developments we may
expect greater use of Newton methods, and progress in this direction is
discussed in Section 4.5.

In most of the flow region the inviscid flux terms dominate, so modelling
the Euler equations highlights many of the difficulties. The first of these
is that the discrete equations, based on the cells, do not match up with
the unknowns, based on the vertices. Even having the correct number of
equations depends on the careful imposition of boundary conditions. Then
the resulting equations are far from diagonally dominated when linearized.
Thus most iteration procedures are based on combining the residuals from
the cells surrounding a vertex to form a nodal residual, which is what is
actually driven to zero. So we introduce distribution matrices Dα,i and
define nodal residuals by

Ni(U) :=

∑p
α=1 |Qα|Dα,iRα∑p

α=1 |Qα|
, (3.13)

where p is the number of cells meeting at node i, normally 4. An impor-
tant particular choice of the distribution matrices is closely related to the
most widely used two-dimensional form of the Lax–Wendroff method, and
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corresponds to that used in the pioneering paper by Ni (1982): for node i
in Figure 3.7, we have

Dα,i = I + νC
∆tα
|Qα|

[xjl,2Aα,1 − xjl,1Aα,2], (3.14)

where νC is a cell-based global CFL number, ∆tα a local time step and
Aα,ℓ , ℓ = 1, 2, are the Jacobian matrices of the inviscid fluxes evaluated at
the centre of cell Qα. Then the basic iteration can be written as

Un+1
i = Un

i − νN∆tiNi(U), (3.15)

where ∆ti is the minimum local time step from the surrounding cells and νN

a node-based global CFL number. Such a scheme was applied successfully to
solving the Navier–Stokes equations around an aerofoil in Crumpton et al.

(1993), using a multigrid acceleration procedure based on a standard full
approximation scheme. It was shown that for model problems the CFL
parameters should satisfy

νN ≤ νC and νNνC < 1;

and for the Navier–Stokes problems the role of νN was to control the rate
of convergence of the iteration, while the value of νC affected the quality
of the converged approximation: in particular, the extent to which the cell
residuals were driven to zero rather than just the nodal residuals.

There are two further difficulties that affect these methods: the first is the
presence of a spurious chequer-board mode; and the second is that the con-
tinuous form of the approximation is not well suited to representing shocks.
The chequer-board mode arises from the averaging in the trapezoidal rule,
and will be stimulated by the presence of shocks or other rapidly changing
flow features to give severe oscillations in both directions of a typical mesh.
These necessitate the addition of carefully chosen dissipation terms, which
are critical to the success of the method. The introduction of procedures
to recognize the presence of shocks, and to provide a global fit for them,
can be used for simple problems such as the inviscid transonic flow around
an aerofoil treated in Morton and Paisley (1989); however, this is not very
feasible for general problems.

These difficulties have meant that cell-vertex methods are not as widely
used at present as cell-centre and node-centred schemes. However, there
has been considerable interest in the last few years in the development of
cell-vertex methods on triangles. The attraction of quadrilateral meshes is
that globally there are as many cells as vertices, so one can hope to drive
most of the cell residuals to zero, and the nodal residuals are introduced
only to achieve that end. With triangles this approach is no longer feasible.
Instead, in the same way that approximate Riemann solvers use the discrep-
ancy between two neighbouring flux values to update the two states, so the
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flux residual in a triangular cell is used to update the states at its three ver-
tices. In his influential paper Roe (1981), Roe was already expressing this
viewpoint and expanded on it in Roe (1982); subsequent collaboration with
Deconinck (Deconinck, Roe and Struijs 1993) took the ideas much further,
and a recent survey, Ricciutto, Csik and Deconinck (2005), summarizes the
present position.

4. Evolutionary algorithms

The various formulations of the finite volume approximation in the spatial
variables require differing approaches to the approximation in time. At one
extreme we have the system of ODEs in (3.4) that require a careful choice
of ODE solvers. At another we have the system of nonlinear algebraic
equations (3.12), which would be only slightly modified in an implicit time-
stepping of an unsteady problem, and this needs special solution algorithms.
And between these we have methods which use explicit time-stepping inte-
grated into the spatial discretization. We will briefly survey each of these,
starting with the need to define numerical flux functions for the cell-centre
schemes, which leads naturally into considering first explicit, and then im-
plicit, time-stepping algorithms.

4.1. Numerical flux functions

It is clearly not feasible to solve the generalized Riemann problem at all cell
boundaries on a triangular or quadrilateral mesh, that is, to take account
of mesh corners and the possible variation of the recovered approximation
Ũ along each boundary. We therefore have to consider the construction of
approximate flux functions to substitute into the typical scheme (3.4). A
useful starting point is the scalar problem and Brenier’s transport collapse

operator (Brenier 1984). The exact solution of

ut + f1(u)x1
+ f2(u)x2

= 0

carries the initial data along the characteristics until shocks form: but in
the transport collapse operator approximation this data is carried forward
to give multivalued solutions at each point in space, and then these are com-
bined to give the approximation. Brenier showed that repeated application
of this process over small time steps converges to the the correct solution of
the PDE as the time steps are refined; indeed, it provides one of the simplest
means of establishing Theorem 2.1. He also showed that in one dimension
it could lead directly to the Engquist–Osher scheme.

Suppose that in this one-dimensional case we have a (possibly recovered)

approximation Ũn(x) at time tn, and that f ′(u) = a(u). Let

y = x + a(Ũn(x))∆t
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denote the end point of the characteristic drawn from (x, tn) through the
time step ∆t. Then it was shown in Lin, Morton and Süli (1993) that
the transport collapse operator can be interpreted in terms of a Riemann–
Stieltjes integral along the graph [Ũn, y], and that it is thus equivalent to
a characteristic-Galerkin method. Suppose the piecewise constant basis
function on the mesh of Figure 1.1(b) is denoted by

χj(x) = Hj+1/2(x) − Hj−1/2(x)

in terms of two Heaviside functions. Then an update algorithm that may
include a recovery step can be written in the form

∆xj(U
n+1
j − Un

j ) =

∫
Ũn(x)[χj(y) dy − χj(x) dx] (4.1)

= −
∫ [ ∫ y(x)

x
χ(s) ds

]
dŨn.

To interpret this as a finite volume method we have to make use of the
relationship adu = df and carry out the integral on the right to give a
difference of flux functions: this has to be done with care when crossing a
sonic point, for which a(u) = 0. Several examples can be found in Morton
(2001), including the Engquist–Osher case in which there is no recovery
stage.

Even more interesting is the two-dimensional case on a rectangular mesh.
It is shown in Lin, Morton and Süli (1997) that, in addition to the one-
dimensional flux differences along the sides of a mesh box arising from inte-
grals of a1du and a2du, there are also corner terms arising from integrals of
a1(u)a2(u)du. With no recovery, on a uniform mesh and with the CFL con-
ditions 0 ≤ a1(U

n)∆t ≤ ∆x1, 0 ≤ a2(U
n)∆t ≤ ∆x2 satisfied, the difference

scheme that results from this method has the form

Un+1
i,j − Un

i,j

∆t
+

∆−x1
f1(U

n
i,j)

∆x1
+

∆−x2
f2(U

n
i,j)

∆x2
− ∆t

∆−x1
∆−x2

f12(U
n
i,j)

∆x1∆x2
= 0,

(4.2)
where the corner flux is given by

f12(u) :=

∫ u

a1(v)a2(v) dv,

and ∆−xℓ
is the backward difference operator in the xℓ direction. The

scheme is stable under the given conditions, but without the extra
corner term the stability limit would be given by a1(U

n)∆t/∆x1 +
a2(U

n)∆t/∆x2 ≤ 1.
A key point needs to be made about these formulae, which is particularly

important in the two-dimensional case. They resulted from the develop-
ment of unconditionally stable methods for hyperbolic problems in which
shocks were not the key phenomena: thus they were not generally put in
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their finite volume form and characteristics were tracked even into non-
neighbouring cells before the projection was made to obtain the updated
approximation. Atmospheric flows are a typical application area: see, e.g.,
Staniforth and Côté (1991). Thus the significance of (4.2) is that the stable
region in (x1, x2)-space is a mesh rectangle and other formulae are obtained
for neighbouring rectangles so that the whole plane is covered to give an
unconditionally stable scheme. This is clearly not so relevant to the general
triangular and quadrilateral meshes that we are concentrating on. But what
is relevant to note is that the corner terms represent an O(∆t) correction
to the flux terms obtained along the edges: to omit them, as is normal
with general finite volume methods, commits an error as well as limiting
the stability: see LeVeque (2002) for a wider discussion on the importance
of corner terms.

Formulae obtained from the transport collapse operator also provide valu-
able guidance on the modifications to the flux functions that arise from a
recovery stage. For example, suppose the discontinuous linear recovery (3.6)
is used in one dimension. Then substitution into (4.1) leads to a flux func-
tion of the same form as the Engquist–Osher flux (1.7) but with different
terms: the quantities involved are obtained from the values of the recovered
approximation just to the left and to the right of the interface so as to give

F̃
n+1/2
j+1/2 = 1

2

[
(1 + s+

j )F̃+
j + (s−j+1 − s+

j )f(us) + (1 − s−j+1)F̃
−
j+1

]
. (4.3)

Here we will use the notation Ũ±
j for the value of the recovered variable

at the right and left of cell j, and s±j for the signs of the corresponding

characteristic speeds a(Ũ±
j ). It remains to define the two flux values. We

consider only the simplest case, when the characteristic speeds are positive
throughout cell j, and we need to calculate F̃+

j from all the right-moving
characteristics which reach the interface from the cell in one time step. For
this purpose we assume that the characteristic speed also varies linearly
throughout the cell, with a slope M+

j . Then the speed at the point which
is just carried to the interface at the end of the time step is given by

A∗+
j = a(Ũ+

j )/[1 + M+
j ∆t]; (4.4)

and a short calculation gives the following flux value:

F̃+
j =

A∗+
j f(Ũ+

j ) + a(Ũ+
j )f(Ũ+

j − SjA
∗+
j ∆t)

A∗+
j + a(Ũ+

j )
. (4.5)

This average of two flux values gives a scheme which is second-order accurate
in smooth flow regions. In Morton (2001) it is shown to be TV-stable, under
CFL conditions which are principally of the standard form that character-
istics cross no more than one cell in one time step, and where the recovery
stage satisfies only the necessary monotonicity-preserving condition (3.8).
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The same framework can be used to derive a third-order accurate method
by means of a continuous piecewise parabolic recovery process similar to
that introduced in the Piecewise Parabolic Method (PPM) of Colella and
Woodward (1984). In the recovery process the key step is to deduce a value

Ũj+1/2 at each interface, the parabola in each cell then following from the
requirement that the cell average is preserved. One can then show that if
the recovery stage is TVD then the scheme is TV-stable under our familiar
CFL conditions: see Morton (2001).

The real challenge is to carry these ideas forward to systems of conser-
vation laws, and in particular to the Euler equations. A breakthrough was
achieved by Roe (1981) by using a local linearization that ensures that,
from two states uL,uR and a one-dimensional flux vector f(u), a matrix
Ā(uL,uR) is constructed so as to satisfy

Ā(uL,uR)(uR − uL) = f(uR) − f(uL). (4.6)

The advantage of using any local linearization is that the interfacial flux
can be computed straightforwardly from the waves corresponding to the
eigenvalues and eigenvectors of the matrix Ā. If these are given in the
standard form Ā = RΛR−1 and we define the absolute value of Ā by |Ā| =
R|Λ|R−1, then we can write this flux very concisely as

F̄ (uL,uR) = 1
2 [f(uR) + f(uL)] − 1

2 |Ā|[uR − uL], (4.7)

although this is not the way in which it is usually coded. The advantage of
a linearization satisfying (4.6) is that Riemann problems whose solution is
a simple discontinuity (a shock or a contact) are solved exactly, because the
Rankine-Hugoniot conditions are satisfied with the shock speed given by an
eigenvalue of Ā.

The Roe matrix is constructed for the Euler equations by observing that
both u and f can be expressed as quadratic functions of a new variable z

given by ρ1/2(1, v, H)T . Then one can exploit the identity

2(a1b1 − a2b2) ≡ (a1 + a2)(b1 − b2) + (b1 + b2)(a1 − a2)

to introduce matrices B̄, C̄ such that

uR − uL = B̄(zR − zL) and f(uR) − f(uL) = C̄(zR − zL),

from which one can define Ā = C̄B̄−1 to satisfy (4.6); the detailed form
of these matrices can be found in texts such as Hirsch (1990). For obvious
reasons such methods are called flux difference splitting methods and are
computationally quite expensive; alternatively, numerical flux functions can
be computed by flux vector splitting methods such as that due to Steger and
Warming (1981) already referred to.

The Roe matrix gives a direct generalization of the upwind scalar scheme
(1.6) and has similar disadvantages in its emphasis on capturing shocks.
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In particular, convergence would not necessarily be to an entropy-satisfying
solution of the PDE system. Thus, when such a flux function is used it
is modified by some form of entropy fix. Alternatively, one may seek to
approximate rarefaction waves as in the method proposed in Osher and
Solomon (1982) which generalizes the Engquist–Osher flux of (1.7). For
a comprehensive review of schemes that generalize upwind differencing to
systems of conservation laws, described in the context of the underlying
theory, see Harten, Lax and van Leer (1983). The standard CFD text Hirsch
(1990) also describes many widely used schemes. There are many desirable
properties that numerical flux functions should have, such as ensuring that
the density and pressure are always non-negative, and a discussion of such
issues can be found in the recent survey by Roe (2001).

4.2. Evolution-Galerkin methods and error analysis

A useful general framework for considering the approximation of an evolu-
tionary problem by finite difference, finite element or finite volume methods
has the following form. Suppose that in a given function space V the opera-
tor E∆ represents an approximation to the true evolution operator through
a time step ∆t; let Un be an approximation in some discrete subspace Sh of
V to the exact solution u(·, tn) at time tn, and P a projection from V to that

discrete space; finally, let R be a recovery operator giving Ũn = RUn as a
recovered approximation in some larger discrete subspace of V . Then one
step of an evolution-Galerkin method can be written in the alternative forms

Un+1 = PE∆RUn or Ũn+1 = RPE∆Ũn. (4.8)

All of the methods we have described can be put into this form, although
we have not specified the defining operators. We are interested in the error
between the true solution and the recovered approximation, which we esti-
mate by decomposing it into two parts through the introduction of a target

approximation un ∈ Sh: we call ηn = u(·, tn) − Run the projection error

and ξn = Run − Ũn the evolutionary error , so that we have

u(·, tn) − Ũn = [u(·, tn) −Run] + [Run − Ũn] (4.9)

=: ηn + ξn.

An appropriate choice of the target approximation can be important when
comparing differing types of method on non-uniform meshes.

In order to estimate the evolutionary error, we make use of (4.8) to write

ξn+1 ≡ Run+1 − Ũn+1 = [Run+1 −RPE∆Run] + [RPE∆Run −RPE∆Ũn],
(4.10)

and define a truncation error as

T̃n := (∆t)−1(Run+1 −RPE∆Run). (4.11)
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Now suppose that the method is strongly stable in the sense that

‖RPE∆Ũ −RPE∆Ṽ ‖ ≤ ‖Ũ − Ṽ ‖. (4.12)

Then we have the familiar dependence of the evolutionary error on the
truncation error,

‖ξn+1‖ ≤ ‖ξn‖ + ‖T̃n‖∆t. (4.13)

For a well-posed problem one should expect that PE∆ will be strongly sta-
ble, so the stability assumption here is mainly a constraint on the recovery
process.

The linear advection equation ut +aux = 0, with a a positive constant, is
the most illuminating first test case for any proposed approximation scheme
for hyperbolic problems. So it is here. Suppose that on a non-uniform mesh
the upwind Roe scheme (1.3) with (1.6) is applied, using the piecewise
constant approximation Un ≡ {Un

j }. Then, if the target approximation
is based on cell averages, the truncation error will depend on the ratio of
the distance between two cell centres and the length of one of the cells,
so the scheme would be deemed inconsistent with the PDE, as has been
observed by many researchers. On the other hand, suppose we take the
target approximation un ≡ {un

j } such that un
j is the value of the true solution

at the upwind end of the cell, namely u(xj+1/2, t
n), which still gives a first-

order projection error. Now the truncation error (4.11) with no recovery
has the familiar form

Tn
j =

u(xj+1/2, t
n+1) − u(xj+1/2, t

n)

∆t
+

a[(u(xj+1/2, t
n) − u(xj−1/2, t

n)]

xj+1/2 − xj−1/2

and is clearly of first order.
In Morton (1998) this analysis is continued to show that discontinuous

linear recovery gives a second-order error if the grading of the mesh and the
change in solution slope are smooth; and it is also shown that continuous
quadratic recovery as in the PPM scheme gives third-order accuracy under
similar mesh restrictions. The target approximations in these cases are
formed by truncating the Taylor expansion of the cell average of the true
solution about the upwind end of the cell.

The linear advection equation also provides a convenient framework for
considering both the order of accuracy best aimed for, and whether that
should be attained from choice of the order of accuracy of the basic approx-
imation Un, or from the recovery process giving Ũn. Moreover, approxi-
mating this equation on a uniform mesh means that the powerful tool of
Fourier analysis is available. This shows that schemes with an even order
of accuracy propagate waves with an error dominated by dispersion; while
schemes with an odd order have waves dominated by dissipation. For ex-
ample, the best-known second-order scheme is the Lax–Wendroff method,
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which notoriously suffers from a trail of oscillations when used to approxi-
mate the advection of a discontinuity; while the first-order upwind scheme
suffers from severe damping for the same problem, but has surprisingly small
dispersion errors; see Morton and Mayers (2005) for illustrations of these
phenomena and Morton (1998) for a more general discussion.

Thus, for wave propagation problems, such as those arising in meteorology
or oceanography, third-order accuracy has been advocated by many authors,
such as Leonard (1991). Moreover, use of the characteristic-Galerkin method

with the standard continuous piecewise linear finite element basis yields
such a scheme (see Lesaint (1977) and Douglas and Russell (1982)); and
such methods have been widely used in finite element approximations of
the incompressible Navier–Stokes equations (see Pironneau (1982)). Thus,
suppose we approximate the convection-dominated diffusion problem ut +
aux = ǫuxx on a uniform mesh, with linear finite elements, in the following
way. From each mesh point at the time level tn we draw the characteristic
forward to the time level tn+1, and suppose that

ν := a∆t/∆x = m + ν̂ with m ∈ N, 0 < ν̂ ≤ 1.

Then the projection of the approximate evolution operator, denoted by
PE∆ above, is defined by carrying values along these characteristics from
one time level to the next, where the diffusion is applied, and using the
Galerkin projection to determine the new piecewise linear approximation.
In finite difference notation, with µ = ǫ∆t/(∆x)2, we obtain the scheme

[1 + (1
6 − µ)δ2]Un+1

j = [(1 + 1
6δ2) − ν̂∆0 (4.14)

+ 1
2 ν̂2δ2 − 1

6 ν̂3δ3∆−]Un
j−m;

here ∆−, ∆0, δ2 are the first-order backward, the first-order central and
the second-order central differences, all undivided. This scheme is uncon-
ditionally stable and third-order accurate in the convection terms; and of
course it is readily generalized to more space dimensions: indeed, with a
triangular or quadrilateral mesh, though it would not then be expressed in
difference form. It thus provides an extremely valuable yardstick against
which to measure alternative schemes.

Now the piecewise constant basis function is a first-order B-spline, and
on a uniform mesh higher-order B-splines are generated by a recurrence
relation:

χ(p)(s) :=

∫
χ(p−1)(σ − s)χ(σ) dσ, (4.15)

where χ(σ) ≡ χ(1)(σ) is defined as the characteristic function of the interval
[−1

2 , 1
2 ]; and the linear basis functions are second-order B-splines. More-

over, differentiating a spline of a given order generates splines of a lower
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order; and integrating the product of two splines generates higher-order
splines. Thus all the terms in (4.14) could be generated from other than
linear basis functions: in particular, the convection terms giving the third-
order accurate scheme could be generated from using a piecewise constant
approximation Un that is recovered by quadratic splines to give Ũn.

To make this last statement more precise, we are presuming that a non-
adaptive recovery process is used that defines the quadratic spline recovered
approximation Ũn by maintaining the cell averages, that is, by specifying
its inner products against first-order splines; and it is these inner products
exactly equalling inner products between two linear splines that leads to
the equivalence of the two formulations. So in this case there is no loss
of accuracy in using a piecewise constant basic approximation followed by
recovery with a high-order spline, compared with using higher-order basis
functions for Un and no recovery; and this is a general conclusion. Moreover,
with the former approach, which is the basis of many of our finite volume
methods, we have the opportunity to make the recovery stage adaptive so
as to maintain key properties of the solution, as we have already described.
A fuller discussion of these points and some numerical illustrations can be
found in Morton (1996).

4.3. Finite volume evolution-Galerkin methods

The linear advection equation is a reasonable model problem for devising
and analysing algorithms used to solve hyperbolic problems that are dom-
inated by a single velocity field. But it is inadequate for the equations
of unsteady gas dynamics. For these the two-dimensional wave equation
system is more appropriate: we write it as

φt + c(ux + vy) = 0, (4.16)

ut + cφx = 0, vt + cφy = 0,

where φ can be regarded as a pressure and u, v as the velocity components.
The classical Kirchhoff solution of the wave equation, written as a single
second-order equation, is in the form of an integral over the base of a char-
acteristic cone with its apex at the sample point: the solution at the apex is
given in terms of the data over the base. However, Butler (1960) developed
an alternative form for the system (4.16), which he used to good effect in
approximating the Euler equations. In his form the data on the perime-
ter of the base is used, but he also uses an integral over the mantle of the
cone, that is, involving the solution at intermediate times. Unfortunately,
his method did not make use of the data in a very consistent way and it was
quickly superseded by the method of Lax and Wendroff (1960); but with
the help of finite element and finite volume formulations it can be used as
the basis of powerful methods.
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P = (x1, x2, t + δt)

θ

x1

x2

t

P ′ = (x1, x2, t)

Q(θ)

Figure 4.1. Characteristic cone for the wave equation in 2D.

Suppose one integrates a (1,− cos θ,− sin θ) linear combination of the
equations (4.16) along each bicharacteristic that generates the characteristic
cone, centred at P ≡ (x, t + δt), and averages the result over θ; then one
obtains an integral equation for φ that, in the notation of Figure 4.1, has
the following form:

φP =
1

2π

∫ 2π

0
[φQ − uQ cos θ − vQ sin θ] dθ (4.17)

− 1

2π

∫ t+δt

t

∫ 2π

0
S(t′, θ) dθ dt′,

where

S(t′, θ) = c[ux sin2 θ − (uy + vx) sin θ cos θ + vy cos2 θ] (4.18)

and (u, v) are evaluated at Q′ at the intermediate time t′. Similar equations
can be derived for (uP , vP ). If the integral over t′ is approximated by the
rectangle rule at time level t, or the trapezoidal rule, one obtains an approx-
imate evolution operator over a full time step by taking δt = ∆t. This was
used as the basis of various evolution Galerkin methods on a square mesh
in Lukáčová-Medviďová, Morton and Warnecke (2000). The advantage of
such methods was seen to lie in the possibility that, by using all character-
istic directions, they would propagate wave fronts which were not distorted
badly by the mesh orientation. With exact integrals over piecewise con-
stant approximations, this hope was realized; but such methods could only
be first-order accurate and did not have a good stability range.
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To do better, four steps are necessary: recovery by discontinuous bilinear
approximations on the square mesh, use of a more general evolution operator
derived by Ostkamp (1997), adoption of a finite volume framework and
better approximation of the mantle integrals. All of these steps are described
in Lukáčová-Medviďová, Morton and Warnecke (2004) and were applied to
the Euler equations in Lukáčová-Medviďová, Morton and Warnecke (2002).
The finite volume form (2.11) was used, with the conservation form of the
equations, which has the advantage that the evolution operator is needed
only to evaluate the solution on the perimeter of the control volume; and in
the case of the Euler equations the equations for the primitive variables were
used for this purpose. To obtain a second-order accurate method one need
use only the mid-point rule for the time integration, so the approximate
evolution operator is needed only at time t + 1

2∆t and at the quadrature
points used for the integral around the control volume perimeter.

To derive the general evolution operator for a hyperbolic system such as
(2.2), we suppose that the linear combination A(ννν) of Jacobian matrices in
the direction ννν, given by (2.3), has the matrix of right column eigenvectors
R(ννν). Then, if we apply the corresponding transformation to each individual
Jacobian matrix, in general they will not all be diagonalized: writing Dℓ for
the diagonal part and B′

ℓ for the remainder, we have

R−1AℓR = Dℓ + B′
ℓ.

We also introduce the corresponding characteristic variables w ≡ w(ννν) given
by ∂w = R−1∂u. Then, operating on the differential equation with R−1

from the left, we get

∂tw +
d∑

ℓ=1

Dℓ∂xℓ
w = −

d∑

ℓ=1

B′
ℓ∂xℓ

w =: S. (4.19)

It is this equation that is integrated along the bicharacteristic corresponding
to the direction ννν and the ‘source’ term on the right that leads to the mantle
integral when the result is averaged over all directions.

For the wave equation the resulting formula for φ is the same as that given
by Butler but that for the velocity components is different. Thus we have
the following formulae, after an integration by parts in the mantle integrals
over θ to remove the derivatives on the dependent variables:

φP =
1

2π

∫ 2π

0
[φQ − uQ cos θ − vQ sin θ] dθ (4.20)

− 1

2π

∫ δt

0

1

τ

∫ 2π

0
[uQ′ cos θ + vQ′ sin θ] dθ dτ,
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and

uP =
1

2π

∫ 2π

0
[−φQ cos θ + uQ cos2 θ + vQ sin θ cos θ] dθ (4.21)

+
1

2π

∫ δt

0

1

τ

∫ 2π

0
[uQ′ cos 2θ + vQ′ sin 2θ] dθ dτ

+ 1
2uP 0 − 1

2c

∫ δt

0
∂x1

φP ′ dτ,

with a similar formula for vP , where P 0 is the centre of the cone base. Note
that in the scheme given below we take δt = 1

2∆t.
The integrals at the old time level are carried out exactly for either the

unrecovered piecewise constant approximation Un, or its discontinuous bi-
linear recovered counterpart Ũn. It is the approximation of the mantle
integrals, that involve values of the solution at intermediate times, that are
crucial to both the accuracy and stability of methods based on these for-
mulae. Fortunately, there is one case when these integrals can be evaluated
exactly in terms of the known data: that is, when that data represents
waves that are one-dimensional so that we can use the familiar d’Alembert
formula. Lukáčová-Medviďová et al. (2004) used this, both for piecewise
constant and continuous piecewise linear data, to relate the mantle inte-
grals to those round the perimeter of the cone base. Substituting the result

Figure 4.2. Solution to the 2D Sod test case.
Density at time t = 0.2 (left) and at t = 1.7 (right).
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into the finite volume framework on a rectangular mesh, gives a scheme for
updating the cell averages which corresponds to (2.11) and takes the form

|Ri|(Un+1
i − Un

i ) + ∆t

∮

∂Ri

F(EδRUn) · n ds = 0, (4.22)

where Ri is a mesh rectangle and Eδ is the approximate evolution opera-
tor over half a time step as just described, and R represents the recovery
operator. Using Simpson’s rule for approximating the integrals around the
cell perimeter, the resulting methods are second-order accurate, being some
five times more accurate than the comparable Lax–Wendroff method, and
have good stability properties. More importantly, when applied to the Sod-
2D test problem involving cylindrically symmetric wave propagation and
reflection, it preserves the symmetry very precisely: see Figure 4.2 and the
results in Lukáčová-Medviďová et al. (2004).

4.4. Semi-discrete explicit time-stepping algorithms

The traditional discretization of hyperbolic equations was based on methods
using finite differences in space and time, with explicit time differencing.
They are simple to implement and the CFL stability limit on the time
step is commonly consistent with the requirements of accuracy. However,
we have already seen several situations when these arguments break down:
when a steady state is sought, or the flow rate of change is much slower
than important characteristic speeds; and at sharp corners in the mesh
where the ideal scheme corresponding to (4.2) cannot be used and the CFL
limit is drastically reduced. Moreover, when grid adaptivity is introduced
in Section 6 a uniform explicit time step may be quite inappropriate. In
such situations it may be preferable to consider the space discretization
quite separately from that in time, not attempting in any way to have the
fluxes represent averages over a time step, as is implied by the notation
introduced for the Godunov method in (1.3) and which led naturally to
the complications faced by the FVEG methods described in the previous
subsection; instead, we seek methods to solve large systems of ODEs such
as that given by (3.4).

One-step methods, such as Runge–Kutta schemes, are clearly attractive
for this purpose and their use goes back to the very influential paper of
Jameson, Schmidt and Turkel (1981). The behaviour of the methods, and
hence the selection of the most appropriate, can be studied by considering
model hyperbolic systems and applying Fourier analysis in the spatial vari-
ables. Then, in a standard stability region plot, it is clear that it is the
behaviour along the imaginary axis and just to its left that is most impor-
tant. So in that paper Jameson et al. used the standard explicit fourth-order
Runge–Kutta scheme which is stable for a CFL number up to 2

√
2 when
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upwind differencing is applied to the linear advection equation, and allows
for a reasonable amount of damping to be added.

However, Shu and Osher (1988) observed that this scheme does not pre-
serve monotonicity properties that may have been built into the spatial dis-
cretization. They therefore introduced special TVD-Runge–Kutta schemes
that preserve the properties of ENO-type schemes at the cost of reduced
stability ranges. If we write (3.4) as

d

dt
Ui(t) = −Ni(U(t)),

and temporarily suppress the subscripts, then a typical third-order scheme
has the form

U(0) := U(t), (4.23)

U(1) = U(0) − ∆tN (U(0)),

U(2) = U(0) − 1
4∆tN (U(0)) − 1

4∆tN (U(1)),

U(3) = U(0) − 1
6∆tN (U(0)) − 1

6∆tN (U(1)) − 2
3∆tN (U(2)),

U(t + ∆t) := U(3).

But then such a scheme has a CFL limit reduced to unity for the above
model problem.

4.5. Implicit time-stepping

Considerations such as those outlined in the previous subsection lead to
the conclusion that implicit time-differencing is bound to play a larger role
in future methods, either in the semi-discrete formulation introduced there
or in a fully discrete formulation. This is despite the difficulties posed by
the resulting large systems of highly nonlinear equations that such methods
will lead to. There are two major hurdles to overcome: formulation of the
equations to ensure convergence of the Newton or quasi-Newton iterations
that are needed; and rapid solution of the linear equations at each iteration.
Hyperbolicity of the equations being approximated ensures the underlying
Jacobians are well behaved with finite eigenvalues and a full set of eigenvec-
tors. So, if care is taken to reflect properly the properties of the differential
equations in their discretization, attention can often be concentrated on the
solution of the linear equation systems.

A natural starting point for considering these issues would seem to be
provided by the Preissmann box scheme applied to the St. Venant equations
for one-dimensional river flow, where solution of the global Newton system
is the standard procedure for subcritical flows. However, it has long been
recognized that this formulation runs into difficulties when flows develop a
supercritical section. Thus we will start even more simply with the scalar
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problem of the inviscid Burgers equation and initial data that leads to a
shock; and we consider not only the box scheme, as the simplest cell-vertex
method, but also later an implicit cell-centre or node-centred scheme.

Suppose that, on the interval 0 ≤ x ≤ 1, initial data u0(x) are given with
u0(0) = uL > 0 and u0(1) = uR < 0. Then boundary conditions need to be
imposed at both these boundaries in order to solve the problem for t > 0;
and if these values continue to be imposed, eventually a shock will form.
Now divide the interval into J cells with the points x0 = 0, x1, . . . , xJ = 1,
and suppose first that we approximate the problem with the box scheme
(1.2). As there are J cells, there will be J box equations and two bound-
ary conditions to be satisfied by the J + 1 unknown nodal values; clearly,
something has to be sacrificed. To clarify the choice, suppose that u0 has
the constant value uL to the left of some point x = xS ∈ (xk, xk+1) and uR

to the right: then, in carrying out the first time step, we can set U1
0 = uL

and work from left to right using each cell residual equation to calculate
successively U1

1 , U1
2 , . . . , U1

k until the shock is reached; and we can do the
same from the right for U1

J , U1
J−1, . . . , U

1
k+1. Thus all the nodal values at

the new time level could be calculated in this way without having to use
the box equation for the cell containing the shock. But this would violate
the basic conservation law for u and is unacceptable; and, in fact, the same
problem would occur if we were to discretize the initial data.

Apart from the boundary conditions, this overall conservation property
is the most important consideration. We satisfy it by means of a general
algorithm which we will refer to as a residual distribution scheme: these
ideas were originally put forward in Roe (1982) and Deconinck et al. (1993)
in the context of explicit time-stepping algorithms, and in Crumpton et al.

(1993) to derive iteration procedures for steady flow problems; but they
are equally applicable to the tasks of discretizing the initial data or setting
up implicit time-stepping equations. For a general scalar one-dimensional
problem, we suppose that we have for each cell a residual Rj+1/2 and an
average or representative characteristic speed aj+1/2. Then we execute the
following two steps:

• for each cell, allocate the residual Rj+1/2 to node j if aj+1/2 ≤ 0 or to
node j + 1 if aj+1/2 > 0;

• for each node, set up the appropriate nodal equation using the sum of
the residuals that have been allocated to it.

For our present Burgers’ equation problem, let us first consider the dis-
cretization of the initial data containing a shock by a continuous piecewise
linear approximation satisfying the two boundary conditions. The integral
of u0(x) over each cell gives the cell residual; and in the situation described
above, we would clearly have average characteristic speeds that were posi-
tive (i.e., supercritical) for the cells to the left of xk, and negative (i.e., sub-
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critical) for the cells to the right of xk+1. The only issue is with the shock
cell: should its residual be combined with that from the left or the right?
Let us suppose the latter. Then, by setting the residuals to zero, we would
set U0

j = uL for j = 0, 1, . . . , k and U0
j = uR for j = J, J − 1, . . . , k + 2; and

from the combined residual from the cells either side of k +1, we obtain the
following equation for U0

k+1:

1
2(uL + U0

k+1)(xk+1 − xk) + 1
2(U0

k+1 + uR)(xk+2 − xk+1)

= uL(xS − xk) + uR(xk+2 − xS).

This gives

U0
k+1 =

(2xS − xk − xk+1)uL + (xk+1 + xk+2 − 2xS)

xk+2 − xk
.

Now it is clearly important that U0
k+1 should lie between uL and uR, a con-

dition required to maintain the TVD property when setting up an evolution
step; and this requires that

1
2(xk + xk+1) ≤ xS ≤ 1

2(xk+1 + xk+2).

The first inequality implies that the shock cell residual should be combined
with that from the cell to the right when the shock is closest to the bound-
ary with that cell, at xk+1; in other words, when the shock cell is dominated
by uL values and therefore considered to be supercritical. Correspondingly,
the second inequality implies that these two cell residuals should be com-
bined when the shock is in the cell (xk+1, xk+2) and closest to the left-hand
boundary, so that it is subcritical.

These later interpretations are the key to determining how to carry out
an evolution step both for this problem and more generally. For each cell
we calculate the box scheme residual and allocate it to the node to its
left or right according to whether it is regarded as being a subcritical or
supercritical cell: and this is determined by an average characteristic speed
calculated from the current solution approximation. Thus in the neighbour-
hood of a shock we always combine the residual of a cell which is deemed
to be subcritical with one deemed supercritical.

There is also the complementary situation to consider in which the initial
data, or current solution, is subcritical on the left and supercritical on the
right, so that there is a sonic point or critical point at some point of the
interval. Then, for example with uL < 0 and uR > 0, boundary conditions
are not imposed on the left or the right so that now there are too few
equations provided by the residuals to determine all the unknowns. The
solution is to split the residual for the cell containing the sonic point at that
point: for the Burgers’ equation problem, either to discretize the initial data
or to evolve the solution, values are obtained successively by working out
from the sonic point to the boundaries. Incidentally, it is worth noting that
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this device corresponds to how the Engquist–Osher scheme of (1.7) breaks
up the flux differences near a sonic point.

In Freitag and Morton (2007) these two techniques were applied to extend
the Preissmann box scheme to solve St. Venant equation problems with
a supercritical section. The mass residual was that chosen to be either
split at a sonic point or combined at a shock; and the resultant system of
equations was shown to be well behaved when solved by Newton’s method
combined with the standard Thomas algorithm applied to the resultant
block tridiagonal system of linear equations.

However, these are simple problems in only one space dimension. For the
compressible flow equations in two dimensions, residuals for cells crossed
by shocks are in general poorly computed by the trapezoidal rule applied
to the cell faces; and this can trigger violent chequer-board and washboard
oscillations which are normally damped by artificial viscosity terms, of both
second-order and fourth-order type. The distribution matrices, introduced
in (3.13) and (3.14), to match the cell residuals with the unknowns, are also
difficult to define. So, although an appeal to feedback control techniques
as in Morton and Stringer (1998) offers a way forward with both these
difficulties, more development is still needed for the application of cell-vertex
methods to these problems.

We turn instead to cell-centre and node-centred methods, where the equa-
tions and unknowns have a more natural matching with the number of
equations always equal to the number of unknowns. The node-centred
method is easiest to apply to the Burgers’ equation problem and the mesh
described above: there are J + 1 unknowns corresponding to a piecewise
constant representation in which the discontinuities occur at the J cell mid-
points; and, for the shock problem which had ingoing characteristics at both
boundaries, the end values are given by the boundary conditions, while for
j = 1, 2, . . . , J − 1 a typical equation will be of the Crank–Nicolson form

(xj+1/2 − xj−1/2)[U
n+1
j − Un

j ]

+ 1
2(tn+1 − tn)[Fn+1

j+1/2 + Fn
j+1/2 − Fn+1

j−1/2 − Fn
j−1/2] = 0,

where the fluxes have to be obtained from an approximate Riemann solver,
and xj+1/2 is a cell mid-point. For a problem with an outgoing characteristic
at a boundary, on the other hand, a corresponding equation is constructed
over a boundary half-cell.

A Newton solver needs to be applied to this system of equations, which
has some implications for the choice of Riemann solver for the fluxes: they
should be smooth functions of the unknowns {Un+1

j } which yield a Jacobian
matrix to which fast solvers can be applied. For our simple expository
problem let us suppose we use simple upwind fluxes. Then, where the flow
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is supercritical, the Jacobian will have diagonal elements of the form

(xj+1/2 − xj−1/2) + 1
2(tn+1 − tn)Un+1

j ;

and where it is subcritical, of the form

(xj+1/2 − xj−1/2) − 1
2(tn+1 − tn)Un+1

j .

Hence these will always be increased by the flux terms; and, in general, a
reasonable choice for the Riemann solver will lead to a diagonally dominant
Jacobian, thus assisting with the choice of a fast solver.

Of course, the disadvantage of this approach is that the immediate out-
come is only a first-order accurate approximation: a recovery procedure
is needed to obtain higher-order accuracy. However, Fezoui and Stouff-
let (1989) successfully used such an approach to approximating the Euler
equations on a triangular mesh with simplified Jacobians, reporting almost
quadratic convergence with a first-order scheme and quite acceptable results
for a second-order scheme. More recently, in a series of papers (Meister and
Oevermann 1996, Meister 1998, Meister and Vömel 2001), Meister and his
collaborators further developed such methods and applied them successfully
to the solution of both the Euler and Navier–Stokes equations. Some of the
issues that need to be resolved in such an approach are as follows:

• whether to use the simple Crank–Nicolson (or more general theta-
method) form of equation used above, or an implicit Runge–Kutta
scheme such as a BDF method (see Hairer and Wanner (1996));

• choice of the recovery procedure, Riemann solver and approximate
Jacobian;

• choice of the preconditioner and iteration scheme to solve the linearized
equations.

In the papers cited above, Meister used a node-centred scheme based on
a Delaunay triangulation of the flow region, and concentrated on steady
flow problems. He used discontinuous linear recovery, as described below in
Section 5, to obtain second-order accuracy, with numerical fluxes computed
by the AUSMDV scheme due to Liou and Steffen (1993) and Wada and Liou
(1994) that combines the accuracy of flux-difference splitting methods with
the economy of flux-vector splitting schemes. Much of the later sections
of this review will be devoted to recovery procedures; and in the next two
subsections we summarize some of the other key ideas that are needed to
implement such methods.

4.6. ENO and WENO schemes

In the mid-1980s it became clear that the strict imposition of Harten’s TVD
condition at the recovery stage of an algorithm would lead to a loss of accu-
racy at solution extrema; and we have already referred in Section 3.2 to the
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clipping of peaks when slope limiters are applied in the case of discontinuous
linear recovery. New algorithms have therefore been introduced in a very
influential series of papers, in which the total variation is allowed to increase
to a limited extent in such a way that the order of accuracy is maintained
uniformly throughout the domain: these are the essentially non-oscillatory

or ENO schemes.
In the first paper, Harten and Osher (1987), the main ideas are introduced

for a second-order approximation called UNO2 to a scalar one-dimensional
problem on a uniform mesh. The recovery stage uses the MUSCL discon-
tinuous linear approximation (3.6) but the novelty lies in the choice of the
slopes Sj . A non-oscillatory piecewise parabolic interpolant Q(x; U) of the
cell averages is constructed which, between Uj and Uj+1, uses either Uj−1

or Uj+2 (whichever gives the smaller second difference in absolute value) as
the third value to determine the quadratic interpolant: it is shown that this
choice results in an interpolant with no more local extrema than the set of
U values. Then it is the derivatives of this function that are used to define
the slopes as

Sj = minmod(Q(xj − 0; U), Q(xj + 0; U)). (4.24)

The interface fluxes are calculated by approximating the constancy of the so-
lution along its characteristics: using the same average characteristic speed
an

j+1/2 as in the Roe scheme (1.6), when this is positive the flux given for

that scheme is changed, with λ = ∆t/∆x, to

F
n+1/2
j+1/2 = f(Un

j ) +

1
2an

j+1/2(1 − an
j−1/2λ)Sn

j

1 + λ(an
j+1/2 − an

j−1/2)
. (4.25)

The result is shown to be a scheme which is uniformly second-order accurate
wherever the solution is smooth, including extrema and sonic points.

There are many necessary generalizations of this algorithm. Extensions to
a non-uniform mesh are reasonably straightforward, since both the parabolic
interpolation and the calculation of the fluxes from the discontinuous linear
approximation are readily carried out on an arbitrary mesh. Even exten-
sions to higher-order recovery procedures using Newton divided differences
can be formulated in a natural way. The key step there is to define a se-
quence of cells running out from a given cell, such that at each stage the
choice from the left or the right is made so that the resultant divided differ-
ence is the smaller in absolute value of the two available. However, Harten,
Osher, Engquist and Chakravarthy (1986) showed that, at higher than sec-
ond order, the process allows spurious oscillations to appear, of a magnitude
limited by the order of accuracy – prompting the adoption of the general
name ENO. A further point of choice is whether the cell values are regarded
as point values, as in UNO2, or the cell averages are matched. The latter
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is more in the spirit of the optimal recovery process, and in one dimension
is best done by forming the interpolation formula for the primitive function
of U and then differentiating the result; but any such procedure requires
more computation.

Harten, Engquist, Osher and Chakravarthy (1987) further extended these
ideas to systems of equations in one dimension, in particular to the Euler
equations. The recovery procedures are applied to locally defined char-
acteristic variables; and the fluxes are calculated by using local Cauchy–
Kowalewski formulae, similar to those developed by Ben-Artzi and Falcovitz
(1984). In addition, it has long been recognized that shock recovery pro-
cedures can be applied to finite volume or characteristic-Galerkin methods
in order to calculate the position and jump parameters of a shock: see,
e.g., Morton and Rudgyard (1988), Morton and Paisley (1989) and Childs
and Morton (1990), and references therein. This is taken a step further in
Harten (1989), where the ENO recovery procedures are used to detect the
presence of contact discontinuities and to recover them so as to prevent the
smearing that is normal for most methods. Applying all these developments
leads to a very powerful set of one-dimensional schemes: and numerical ex-
periments on standard Euler test problems, such as those from Woodward
and Colella (1984), demonstrate impressive results for both second-order
and fourth-order methods.

However, the major challenge is the development of such schemes on
multidimensional unstructured meshes. We have already described in Sec-
tion 3.2 some procedures for discontinuous linear recovery on triangular
meshes; and much has been done to extend these ideas in connection with
the development of ENO schemes: see Harten and Chakravarthy (1991)
and Durlofsky et al. (1992). But it was Abgrall (1994b) who pointed out
the advantage of using node-centred rather than cell-centre schemes in this
recovery process, and we will take up this topic again in Section 5.

A problem that has generally been encountered with ENO schemes is a
lack of convergence to steady flow solutions, because of oscillatory switching
that can take place in the choice of recovery stencils. This has led to the
development of WENO schemes by Liu, Osher and Chan (1994), in which
a smoothness indicator is used to compute a weighted average of all the
local recovery polynomials. Extensions to unstructured meshes have been
developed by Friedrich (1998), which we will describe in Section 5.

4.7. Multigrid and Krylov subspace methods

In the thirty years in which finite volume methods have been used there
have been major developments in methods for solving the large systems of
algebraic equations that they generate. Two lines of development have been
particularly important: one approaches the problem from the viewpoint of
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minimizing an appropriate function, as originated by the conjugate gradi-
ent method of Hestenes and Stiefel (1952) and generalized to unsymmetric
problems in the GMRES algorithm of Saad and Schultz (1986); and the
other exploits the fact that a PDE is being approximated on a mesh and
the properties of the equation system depend strongly on the mesh size,
as exploited in multigrid algorithms by Brandt (1977), following the earlier
work of Federenko (1964) and others.

The two techniques have been applied in tandem to great effect in the solu-
tion of incompressible flow problems: see, in particular, Elman, Silvester and
Wathen (2005). In such problems, the incompressibility condition brings a
degree of ellipticity to the problems that enables the vast experience from
Varga (1962) onwards to be built upon. There is a natural progression
from discretizing the Poisson equation, and solving the resultant algebraic
system, to tackling linear convection-diffusion problems, the Stokes system
of equations and thence on to the incompressible Navier–Stokes equations.
Algorithms such as GMRES are included in the general class of Krylov sub-
space algorithms: see the review by Eiermann and Ernst (2001) and the
book by van der Vorst (2003). And these methods together with multigrid
techniques have been progressively refined, generalized and optimized for
this sequence of problems.

Compressible flow problems, with greater nonlinearity and a dominant
hyperbolic character, pose greater difficulties. Thus, in early studies, point
iteration methods dominated the scene. Multigrid methods were first intro-
duced for steady transonic flow problems by Jameson (1979) and have made
a massive impact on the field. The choice of appropriate smoothers is always
important in multigrid applications, and the choice of alternating direction
smoothers in this early study indicated how the flow direction influenced the
behaviour of the methods. For a general reference on multigrid methods in
the context of fluid flow problems, see Wesseling (1992); for a description
of applications to compressible flow computations on unstructured meshes
see Mavriplis (1995), and for a more recent review see Mavriplis (2002).

Krylov subspace methods have also been developed for these problems:
see, e.g., Nielsen, Anderson, Walters and Kayes (1995). In particular, their
application to the finite volume methods we have described has been ex-
plored by Meister (1998). For any such algorithm, efficient preconditioning
is essential and this has been developed by Meister and Vömel (2001) for
the discretization of hyperbolic conservation laws.

5. Optimal recovery: theory and practice

The two preceding sections will have shown the reader the extent to which
the successful development of finite volume methods depends on the recovery
or reconstruction stage. Only the cell-vertex approach can give second-order
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accuracy without some such step, however rudimentary. We prefer the term
‘recovery’ because of its reference to the much more general field of optimal

recovery which we will now outline, and because we feel that it is necessary
to take advantage of this greater generality. Without such a general frame-
work there is a natural tendency to use only local polynomials, as we have
seen with the ENO methods, and these can easily lead to ill-conditioned
procedures, with breakdown occurring there in the one-dimensional case
when the polynomial degree exceeds six. The initial ideas for this theory
are due to Golomb and Weinberger (1959) and were subsequently greatly
developed in Micchelli and Rivlin (1977).

5.1. Theory of optimal recovery

Suppose we are trying to deduce some property of an unknown function u
from some data given for it, and we can set up the problem in the following
way. We suppose that u lies in a Hilbert space H with a bound on its norm
‖u‖H , and the data are given in the form of the values of a set of bounded
linear functionals on that space, the information operator

I := {F1(·), F2(·), . . . , FM (·)};
furthermore, what we seek is the value of another bounded linear functional
F (·), the feature operator. Then Golomb and Weinberger (1959) observed
that the given values of the linear functionals define a hyperplane in H and
the bound on ‖u‖H a hypersphere, with their intersection defining a hyper-

circle (see Synge (1957)); moreover, the centre of this hypercircle defines a
function uc ∈ H and it gives a value of the sought-after functional F (uc)
which is optimal, and this is the case independently of the information func-
tional that is sought. We will illustrate why this is so by means of one of
the most important examples of the theory.

Let a(·, ·) be a symmetric, bilinear form on H × H that defines an el-
liptic boundary value problem on a region Ω, with homogeneous Dirichlet
boundary conditions: find u ∈ H such that

a(u, v) = (f, v), ∀v ∈ H;

and let the norm on H be defined by ‖v‖2
H := a(v, v). Now consider the

approximation of this problem by a finite element method which uses the
basis functions φ1, φ2, . . . , φM lying in H, and suppose we regard the data
functionals to be defined by

Fi(u) := (f, φi) = a(u, φi), i = 1, 2, . . . , M.

Indeed, whatever the given data functionals, by the Riesz representation
theorem we could find their representers φi which would be defined by these
equations; and we could continue the following construction. We define
HM := span{φi, i = 1, 2, . . . , M}; and then the centre of the hypercircle is



Finite volume methods for hyperbolic conservation laws 203

the orthogonal projection, with respect to a(·, ·), of u onto HM . That is, it
is the familiar finite element approximation UM ∈ HM to u using this set
of basis functions:

Fi(UM ) ≡ a(UM , φi) = (f, φi) ≡ Fi(u), i = 1, 2, . . . , M.

Then we suppose that the linear functional whose value for u we seek to
estimate is

F (·) ≡ a(·, ψ),

where ψ is its representer.
Suppose now that ψM is the orthogonal projection of ψ onto HM . It

follows that

|F (u) − F (UM )| = |a(u − UM , ψ)| = |a(u − UM , ψ − ψM )| (5.1)

≤ ‖u − UM‖H‖ψ − ψM‖H .

Moreover, let us denote by ∆Mu and ∆Mψ the two (positive real) factors
on the right and consider two alternative choices for estimating F , namely

u± := UM ± ∆Mu

∆Mψ
(ψ − ψM ),

for which we can readily check that Fi(u±) = Fi(u), ∀i. Then it is easily
seen that

F (UM ) − F (u±) = ±(∆Mu)(∆Mψ); (5.2)

that is, F (UM ) lies at the centre of the interval [F (u−), F (u+)] of possible
values for F (u), hence giving the optimal estimate for this quantity.

It is a key property of Galerkin and Petrov–Galerkin finite element ap-
proximations that they are optimal or near-optimal approximations in an
energy norm. Thus in Barrett, Moore and Morton (1988a) the framework
outlined above was used to derive techniques for recovering point values of
functions from their weighted L2 best fits, using both local and global recov-
ery procedures; while in Barrett, Moore and Morton (1988b) global recov-
ery techniques were developed from low-order finite element approximations
to ODE problems to obtain higher-order approximations, techniques which
thus correspond to defect correction methods. These introduce higher-order
approximations in a very similar way to those needed for the finite volume
methods we will discuss below.

The theory of optimal recovery has been developed in a very general
setting and the ideas applied to a wide range of problems: see Micchelli and
Rivlin (1977). For finite volume methods the linear functionals that provide
the data are the cell averages; and the information that is required consists of
the function and derivative values from which higher-order approximations
can be constructed – and, in particular, from which fluxes on the element
boundaries can be computed. In the next two subsections we will describe
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how the ENO recovery techniques may be generalized in a very natural
way to two-dimensional triangular meshes. Then we will describe some
less conventional approaches to this problem, based on spline functions and
radial basis functions.

5.2. Recovery on primary triangular grids

In generalizing the ENO recovery techniques to obtain higher-order approx-
imations we will need to consider how to select the mesh for successively
higher orders, what form of expansion to use for the approximations, how to
solve the algebraic equations for the expansion coefficients and how each of
these interact. For instance, it is well known that a linear approximation in
two dimensions cannot be derived from three point values given on a straight
line. So for the cell-centre scheme we would not want to use three triangles
whose centroids almost lie on a line in order to generate our linear recovery
approximation. In what follows we shall generally refer to the recovery of
the scalar quantity U : in application to such as the Euler equations, this
will denote one component of the vector of unknowns or, more commonly,
chosen to be one of the primitive variables.

A very simple but surprisingly successful technique for linear recovery was
described by Durlofsky et al. (1992). The possible node sets for recovery on
the triangle Ti in Figure 5.1 consist of the barycentre of Ti and those of two
of its neighbours:

K1(Ti) := {Tj , j ∈ {i, i2, i3}},
K2(Ti) := {Tj , j ∈ {i, i3, i1}},
K3(Ti) := {Tj , j ∈ {i, i1, i2}}.

On each node set Kk(Ti) a linear polynomial

π
(k)
i := a

(k)
00 + a

(k)
10 (x1 − ci,1) + a

(k)
01 (x2 − ci,2), k = 1, 2, 3,

where ci is the barycentre of Ti, is computed by solving the linear systems

A(Tj)π
(k)
i = Uj , ∀(k, j); (5.3)

here the range of values for (k, j) are given in the above definition of the
node sets. If there is an extremum at triangle Ti with respect to its three
neighbours, then none of the polynomials is chosen and the value on Ti is
not recovered. Otherwise we consider the steepest of the three linear poly-
nomials and check whether its use would result in a new extremum. If that
is not the case this polynomial is taken to be the recovery on Ti. If a new
extremum is created the polynomial with the next steepest gradient is con-
sidered, and so on. If all three polynomials would result in a new extremum
then no recovery is used on Ti. Note that this procedure corresponds more
to the classical TVD approach than to an ENO approach.
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Figure 5.1. Neighbourhood of Ti.

An even simpler algorithm consists of choosing the node set that yields
the linear polynomial with the gradient of smallest absolute value. This is
a true generalization of the ENO idea in that small oscillations are then
allowed to occur. However, this can lead to quantities such as density or
pressure taking on negative values; so a remedial step would be needed.
To reduce this possibility one might consider a larger number of node sets:
for example, using the neighbours of the neighbours of Ti, that is, all the
triangles shown in Figure 5.1. But such a large stencil is more appropriate
for quadratic recovery.

To carry out quadratic recovery, for each node set we need to compute
the coefficients in an expansion of the form

πi(x) := a00 + a10(x1 − ci,1) + a01(x2 − ci,2)

+ a11(x1 − ci,1)(x2 − ci,2) + 1
2a20(x1 − ci,1)

2 + 1
2a02(x2 − ci,2)

2

by matching its average over each triangle in the node set with that of U .
Although the integrals occurring in the coefficient matrix of this system can
be computed exactly it makes more sense to use an appropriate quadrature
rule.

The real problem is the selection of the node sets. In Harten and
Chakravarthy (1991) a sectorial search strategy is advocated in which the
region outside the central triangle Ti is divided into sectors by continuing
the triangle sides in both directions, giving three based on the triangle sides
alternating with three based on its vertices; then these are treated in a
way that corresponds to the two directions in the one-dimensional case, and
typically will give 18 possible ways of adding the three triangles needed for
the quadratic node set. Alternatively, as in Abgrall (1994a) we can argue
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as follows: referring to Figure 5.1 suppose that the chosen linear node set
consisted of {Ti, Ti1 , Ti2}; then there are three pairs of edges on the outer
perimeter that correspond to a pair of triangles, such as {Ti, Ti1}, and on
each edge we consider the neighbouring triangle and its two neighbours,
such as Ti3 with Ti31

and Ti32
on the outer edge of T1 as shown in the figure;

this will give us six choices of three triangles: Ti3 and its two neighbours,
Ti11

and its two neighbours, and both Ti3 and Ti11
with one of their four

neighbours. Again we have 18 choices!
Once a set of possible quadratic polynomials is computed, one has to

be selected by some set of criteria. To ensure that the choice is the least
oscillatory in some sense, we could use the criterion

W (π) :=

√√√√
2∑

µ=1

∑

|α|=µ

a2
α (5.4)

and choose the polynomial which gives a minimal value of W . However,
there are many other possible criteria; and it is far from clear that the
Taylor series used above is best suited for defining these criteria, or for
computing the quadratic and higher-order approximations. We will take up
these points in more detail in the next subsection.

5.3. Recovery on secondary grids

It is argued by Abgrall (1994b) that there are fewer node sets to consider for
higher-order recovery algorithms in this case, and this will lead to important
advantages of node-centred schemes over their cell-centre counterparts: we
will consider them by reference to Figure 5.2, where the nodes are now the
vertices of the triangular grid. In the first stage, for linear recovery, we
consider all the triangles which share a given vertex, say i0, and construct
a linear function for each such that its average over each box centred on
one of its vertices matches the corresponding average of U . Then we choose
that with the smallest gradient: in the figure this is labelled Tmin. We will
describe the quadratic recovery stage in more detail before we come back
to this linear stage.

There are several very important developments presented in Abgrall
(1994b) which elaborate on the advantages of the node-centred methods.
The first has to do with the selection of successive node sets: as can be seen
from Figure 5.2, the three further vertices needed for quadratic recovery can
be obtained from the triangle (and its two further neighbours) that shares
one of its sides with Tmin: this gives a choice of three node sets K(Bi0) for
this stage. Indeed, it is claimed in the paper that at each further stage only
three possible node sets need to be considered.

An even more important aspect of defining a true generalization of the
ENO process is to select a representation of the approximation at each
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Figure 5.2. Three possible sets K(Bi0) for quadratic recovery.

stage which has some of the important properties of the Newton divided
differences used in the one-dimensional schemes. In Abgrall (1994b) the
barycentric coordinates of Tmin are used for the quadratic expansion; that
is, with a cyclic ordering of (1, 2, 3), and now with x1,x2,x3 the vertices of
Tmin, we have the coordinates

λ1(x) =
1

2|Tmin|
[
(x3,1 − x2,1)(x2 − x2,1) − (x1 − x2,1)(x3,2 − x2,2)

]
.

Then a quadratic polynomial for the box centred at i0 can be written as

πi0(x) =
3∑

m=1

(
amλm(x) +

∑

n>m

Amnλm(x)λn(x)

)
;

and Abgrall could prove that the coefficient matrix of the system

A(Bj)πi0 = Uj , Bj ∈ K(Bi0) (5.5)

has condition number of order 1. This also holds for higher-order recovery,
which is in sharp contrast to the poor conditioning obtained with the Tay-
lor series expansion. In addition, by following the analysis of Ciarlet and
Raviart (1972) for interpolation by finite element approximations, he was
able to show that the derivatives of smooth functions were approximated
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similarly, with a similar dependence on the mesh quality. Thus the recov-
ered functions should provide reliable indicators of the smoothness of the
unknown solution.

For the quadratic recovery Abgrall also showed that the system can be
factored into two subsystems of size 3 × 3, with one of them correspond-
ing to the system needed for the linear recovery stage. So this captures
another key feature of the one-dimensional algorithm. Subsequently, in Ab-
grall and Sonar (1997) it is shown that this property also holds at all orders
by exploiting the generalization of Newton divided differences developed
by Mühlbach (1978). We will not give any details here, but it is useful to
outline the main ideas.

Mühlbach introduced the idea of a complete Chebyshev system of func-
tions (f1, f2, . . . , fk, . . . , fn), which for simplicity we can take to be real
functions on R, for which

V

(
f1, . . . , fk

x1, . . . , xk

)
:= det fj(xi) �= 0

is true for any distinct set of points (x1, . . . , xn) and k = 2, 3, . . . , n. For such
a system it is clear that a linear interpolatory formula can be constructed
for another function f(·) which, with its error, he denotes as follows:

pnf ≡ pf

[
f1, . . . , fn

x1, . . . , xn

]
, rnf := f − pnf.

Moreover, this can be expressed in a series whose terms are generalized

divided differences of the function f , with that of order k given by

[
f1, . . . , fk,
x1, . . . , xk

∣∣∣∣f
]

:=

V

(
f1, . . . , fk−1, f
x1, . . . , xk−1, xk

)

V

(
f1, . . . , fk−1, fk

x1, . . . , xk−1, xk

) ;

the series can then be written in the form

pnf ≡ pf

[
f1, . . . , fn

x1, . . . , xn

]
=

n∑

k=1

[
f1, . . . , fk,
x1, . . . , xk

∣∣∣∣f
]

gk, (5.6)

where

g1 := f1, gk := rk−1fk, for k = 2, . . . , n.

Finally, a recurrence relation for the divided differences

[
f1, . . . , fk,
x1, . . . , xk

∣∣∣∣f
]

=

[
f1, . . . , fk−1,
x2, . . . , xk

∣∣∣∣f
]
−
[
f1, . . . , fk−1,
x1, . . . , xk−1

∣∣∣∣f
]

[
f1, . . . , fk−1,
x2, . . . , xk

∣∣∣∣fk

]
−
[
f1, . . . , fk−1,
x1, . . . , xk−1

∣∣∣∣fk

]
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was shown by Mühlbach to follow from a general Neville–Aitken recurrence
formula.

What was shown in Abgrall and Sonar (1997) was that all of this could
be generalized to the recovery problem in more than one space dimension
and using linear functionals on the solution space, with the given function-
als corresponding to the given function values and the unknown function to
the sought-after linear functional. Then the Vandemonde determinants that
occur in the definition of the generalized divided differences correspond to
recovery equations such as (5.5) that have to be solved; and the recurrence
relation for these divided differences expresses the fact that at each stage
the system can be solved by solving similar systems corresponding to ear-
lier stages. In particular, quadratic recovery can be implemented by twice
solving the sort of 3 × 3 system needed for linear recovery.

Thus ENO schemes using quadratic and higher-order recovery become
a very practical proposition. Moreover, so do the WENO schemes which
require the calculation of more recovery approximations. On each box Bi

we have to compute a set of recovery polynomials π
(k)
i where k denotes the

number of the stencil; then we compute a weighted sum

πi :=
∑

k

Ωkπ
(k)
i

where the Ωk are weights with
∑

k Ωk = 1. An oscillation indicator OI is
used to compute the weights: for example, we may use a Sobolev seminorm

OI(π
(k)
i ) := ‖∇π

(k)
i ‖L2(Bi)

as an oscillation indicator; then the weights are computed from

Ωk :=
ω(k)(ε + OI(π

(k)
i ))−β

∑
j ω(j)(ε + OI(π

(j)
i ))−β

.

Here, ω(j), ω(k) are weights which allow a different weighting of different
stencils. The parameter ε is chosen to avoid the division by zero and β is
a measure of sensitivity of the weights on the oscillation indicator. We set
ε = 10−16, β := 8 and ω(k) = 12 for a central stencil while ω(j) = 1 for a
one-sided stencil. Such WENO schemes were developed by Friedrich (1998)
and an example of their effectiveness is shown in Sonar (2002).

5.4. Splines and radial basis functions

In one dimension, splines are commonly introduced through a variational
principle: the linear spline interpolant of a function at a given set of knots is
that interpolant that minimizes the L2-norm of its derivative: and a cubic
spline interpolant is similarly an interpolant that minimizes the norm of
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the second derivative: see, for instance, de Boor (2001). More generally
they can be characterized as centres of hypercircles in certain semi-Hilbert
spaces, that is, a space with seminorm | · |V for which there may exist non-
trivial functions w ∈ V for which |w|V = 0 holds (i.e., the seminorm has a
‘hole’: its kernel ker | · |V contains more than the null function). A spline in
a semi-Hilbert space is then defined to be a function Φ ∈ V which minimizes
the seminorm: that is, for the given information operator I,

|Φ|V = inf
v∈V

Iv=Iu

|v|V

is to be satisfied.
Thus a one-dimensional cubic spline interpolant minimizes the seminorm

given by the L2-norm of the second derivative, which has a kernel consisting
of linear polynomials, and these have to be specified by some side conditions;
for example, the natural cubic spline is determined by setting to zero the
second derivative at each boundary. In two dimensions the cubic spline
generalizes to the thin plate spline, so-called because it is the solution of
the biharmonic equation. In our setting of recovery from cell average data,
Sonar (1996) has shown that it is given by

Φ(x) =

M−1∑

j=0

αjA(y)(σij )
[
|x − y|2 ln(|x − y|)

]
+ a01x1 + a10x2 + a00, (5.7)

where A(y) denotes application of the cell average operator with respect to
the variable y, and the additional linear polynomial is the contribution from
the kernel of the seminorm. We now have to determine M + 3 coefficients
α0, . . . , αM−1, a10, a01, a00 but we have only M conditions given by the
information Iu = {u}, the cell averages on the node set. If we require the
condition

∀q ∈ ker | · |V :
M−1∑

j=0

αjA(σij )q = 0

we get the remaining three conditions needed to determine all coefficients:
we can think of this condition as ‘fixing the hole’ in the seminorm.

One can easily prove that the thin plate spline reproduces linear poly-
nomials, so that recovering from three given cell averages just gives the
linear polynomial which is constructed to fix the hole in the seminorm.
Hence we need to have more than three cells in a node set. In ap-
plying this recovery to the cell Ti in Figure 5.1 we therefore use node
sets comprised of four neighbouring triangles: there is one central node
set K0(Ti) := Ti ∪ Ti1 ∪ Ti2 ∪ Ti3 ; and the three one-sided node sets
K1(Ti) := Ti ∪ Ti1 ∪ Ti11

∪ Ti12
, K2(Ti) := Ti ∪ Ti2 ∪ Ti21

∪ Ti22
, and

K3(Ti) := Ti ∪ Ti3 ∪ Ti31
∪ Ti32

. On each of the node sets we solve the
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linear system

A(T )Φ = A(T )u =: uj , T ∈ Kj(Ti), j = 0, 1, 2, 3, (5.8)

together with the conditions

3∑

j=0

αjA(T ) =
3∑

j=0

αjA(T )x1 =
3∑

j=0

αjA(T )x2 = 0. (5.9)

Denoting respectively by M and N the matrices in these two systems, we
can write the equations for the seven unknowns in this thin plate recovery
spline as

[
M NT

N 0

]




α0

...

α3

a10

a01

a00




=




u0

...

u3

0

0

0




. (5.10)

Explicit expressions for the matrices M and N are relatively easy to calcu-
late. Then, after computing the four recovery splines on the four node sets,
that with smallest total variation over Ti is chosen to be the recovery spline
on Ti.

It is shown in Iske and Sonar (1996) that the thin plate spline is just
one example of a radial basis function that may be used in a cell average
recovery algorithm. Conditions which have to be satisfied by any such
function of the form ψ(|x−y|) are given, as well as several other examples.
They all require considerably more computation than the more conventional
polynomial recovery. The thin plate spline has been experimented with most
widely, but alternatives are easier to use and equally effective.

A simple model problem that can be used to compare some of the recovery
procedures that we have discussed is the following: the initial data consists
of a straight-sided cone, of unit height and with the radius of its base 0.15,
whose centre is at (0.5,0); it is then convected in a circle about the origin,
and we plot the results of various computations at a time corresponding
to half a revolution. In Figure 5.3(a), the left plot shows the mesh (of
2500 nodes and 4802 triangles), and the right plot shows the initial data
and contours of the solution without recovery after half a revolution, using
the Engquist–Osher flux and a simple explicit time-stepping. Figure 5.3(b)
shows the corresponding result obtained with the linear recovery procedure
due to Durlofsky et al. (1992); and (c) is that obtained with a thin plate
spline recovery step by Sonar (1996). The figure shows that the thin plate
spline reproduces the cone much more accurately than the alternatives, both
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(a) Computational grid (left), base and centre of initial cone and solution without recovery

(b) Solution with linear recovery (c) Solution with thin plate spline recovery

Figure 5.3. The rotating cone problem.
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Table 5.1.

u basic DEO mingrad quad1 quad2 TPS

min 0.0 0.0 −1.4 × 10−5 −2.0 × 10−6 0.0 0.0
max 0.382 0.635 0.753 1.04 0.764 0.974

as regards its compactness and its circular shape. Table 5.1, which shows
minimum and maximum cell average heights, emphasizes the comparisons.

In the headings, basic denotes the basic unrecovered scheme, DEO linear
recovery using the Durlofsky et al. (1992) algorithm, while mingrad de-
notes the simpler algorithm which chooses the linear recovery with smallest
gradient; similarly quad1 denotes quadratic recovery using the simple crite-
rion (5.4), quad2 is a more sophisticated quadratic recovery using a sector
search algorithm and, finally, TPS denotes the thin plate spline recovery
just described.

6. Grid adaptivity: a posteriori error control

Except in rather simple and special cases it is impractical to use any form of
shock fitting to achieve sharp definition of shocks. The practical alternative
is to use local mesh refinement. This is simplest with a triangular or tetra-
hedral mesh, and a large literature on both the practical and theoretical
techniques has developed for application to elliptic problems: for a general
introduction which leads towards our present CFD problems, see Eriksson,
Estep, Hansbo and Johnson (1995) and the references therein. In order to
build on this for our finite volume methods, it is best to use node-centred
methods: then the cell averages over the boxes centred on each vertex are
recovered to give local polynomial approximations on each box, as described
in the previous section; restricting these to the vertices of the primary tri-
angular mesh gives a continuous piecewise linear approximation on which
to base criteria for mesh refinement or coarsening. This will form the basis
of the methods described below.

There are, however, many differences in what is required for a compress-
ible flow calculation from that for the approximation of a scalar elliptic
problem. Estimating the a posteriori error is probably the major differ-
ence: which component or combination of components should be used to
measure the error; what norm should be used; how to distinguish the mea-
sured error from its source; and then how best to do all of this when the
solution may be changing rapidly with time? We shall pay less attention to
this last aspect: we will consider problems of mesh refining and coarsening
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arising from shock movement; but we will not consider the estimation and
use of variable time steps.

6.1. Mesh refinement and recoarsening

We will not give here all the details of any particular procedures, but it is
important to outline the key ideas in order to understand the properties of
the resultant approximations. At the end of each refinement or recoarsening
we will ensure that we have a conforming triangulation; and we start with a
conforming triangulation that is everywhere the coarsest that will be used.
The algorithms summarized below follow the general strategies of Bank,
Sherman and Weiser (1983); details can be found in Sonar (2002).

There are two main types of refinement: the so-called red-refinement of a
triangle in which the mid-points of the sides are joined so that the triangle
is divided into four similar triangles as in Figure 6.1; this will make the
neighbouring triangles non-conforming, so that a green-refinement would
be needed in which a mid-side is joined to the opposite node so as to divide
the triangle into two as in the figure. The triangles resulting from a red-
refinement are called red triangles, and are termed the daughters of the orig-
inal mother triangle: similar terminology is used for the green-refinement.

These basic refinements of a single triangle can be used to define a refine-
ment procedure for a conforming triangulation T in which a subset of its
triangles have been marked for refinement:

Algorithm 1

1 Eliminate all green-refinements in T by restoring the mothers of green
triangles. If a green triangle was specified for refinement the restored
mother is also marked for refinement.

2 Red-refine all triangles which are marked for refinement.

3 While there exist triangles in T with more than one non-conforming
node, they are red-refined.

4 Apply the green-refinement for all triangles which have exactly one
non-conforming node.

Figure 6.1. Red-refinement and green-refinement of a triangle.
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The algorithm terminates with a conforming triangulation. Since all chil-
dren of red-refinements are similar to their mothers and green triangles will
be removed in the next refinement step, the refinement procedure is stable:
that is, the inner angles of the triangles are bounded from below in any
sequence of grid refinements.

In order to carry out a recoarsening procedure it is necessary to carry
with each triangle a compact data structure called History. This will in-
clude whether the triangle is the result of a green-refinement, and if so the
identifier of its sister; also it must hold the number of red-refinements that
led to this triangle together with a data stack specifying its sisters and its
antecedents. Then the following algorithm can be applied to a resolvable

patch:

Algorithm 2

for all triangles T ∈ T which are specified for recoarsening
for all three vertices P of T

if the pair (P, T ) spans a resolvable patch P
recoarsen this resolvable patch P.

Figure 6.2 illustrates on the left-hand side some configurations for resolvable
patches around a vertex, and on the right-hand side possible recoarsenings
of the patch without producing hanging nodes. The bottom part of the
figure illustrates a situation at the boundary of a triangulation.

The actual recoarsening of the triangles in a resolvable patch P, spanned
by triangle T ∈ T and one of its vertices P , is carried out as follows:

Algorithm 3

1 Remove all triangles in P and restore their mothers.

2 Remove all green triangles which produce hanging nodes in the mothers
of P, and restore the mothers of these green triangles.

3 Green-refine all triangles which have one non-conforming node.

The result of such recoarsening is a conforming triangulation that would
be obtainable from the original triangulation by a sequence of refinement
steps. Indeed, a sequence of such recoarsenings could lead back to the
original triangulation.

6.2. Weighted L2-norm error control

It was Johnson and his collaborators – see, e.g., Hansbo and Johnson (1991)
and Eriksson and Johnson (1993) – who introduced the idea of residual-
based error indicators to CFD from their well-developed use with elliptic
equations. We denote by uh the continuous piecewise linear approximation
constructed from a finite volume computation, and if L is a first-order dif-
ferential operator, the corresponding residual for the problem Lu = 0 can
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Figure 6.2. Resolvable patches (left) and recoarsened triangles (right).
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be calculated as

rh := Luh.

Our objective is local error control based on such a residual. In application
to the Euler equations we have four components, and might first consider
using the sum of the L2-norms of each component over each triangle T , i.e.,

‖rh‖L2(T ) :=
4∑

i=1

‖rh
i ‖L2(T )

defined on the triangles of the primary grid, with the components of the
residual corresponding to the continuity equation, the two momenta and
energy equations.

Although our initial aim is to use this residual to guide the selection of
triangles for refinement or recoarsening, the more ambitious target (which is
achievable for the finite element approximation of elliptic problems) would
be to define a residual which provides an efficient and reliable bound on the
actual error in the approximation, eh := uh − u: if the operator L has a
bounded inverse from some space Y to a space X, we would like to establish
bounds of the form

C1‖rh‖Y ≤ ‖eh‖X ≤ C2‖rh‖Y (6.1)

for some computable constants C1, C2. Although we cannot expect to
achieve this for the nonlinear Euler equations, it should be borne in mind as
an eventual aim and thus give some guidance on how to measure and weight
the contribution from each triangle. Moreover, we will below get quite close
to realizing this aim for closely related PDE systems.

As a first step, let us consider using the unweighted L2-norm of a shocked
flow: in particular, suppose that the continuous piecewise linear numerical
approximation, on a uniform mesh of size h, given by

uh(x) =





0 0 ≤ x < xi,

(x − xi)/h xi ≤ x < xi+1,

1 xi+1 ≤ x ≤ 1,

approximates the function u which jumps from 0 to 1 at the mid-point of the
interval [xi, xi+1]; and suppose also that the first-order differential operator
L is just ∂x. Then the L2-norm of the residual on the interval [xi, xi+1] is
easily calculated to be

‖rh‖L2([xi,xi+1]) =

√∫ xi+1

xi

|rh|2 dx =

√∫ xi+1

xi

1

h2
dx =

1√
h

,

and this quantity blows up at discontinuities as the grid is refined. Although
in two dimensions on a square mesh this would be avoided for the norm on
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Figure 6.3. Initial grid for the NACA0012 aerofoil.

Figure 6.4. Pressure distribution on the initial grid.

an individual mesh square or triangle, for a shock extending a finite distance
the norm over the region covering it would blow up in the same way. So the
unweighted norm would give excessive refinement near such a shock.

On the other hand, in the finite element methods of Hansbo and Johnson
(1991) it was found that the local triangle diameter should be used as a
weight factor:

‖rh‖L2
h
(T ) := hT ‖rh‖L2(T ), (6.2)

where hT denotes the length of the longest side of T . In Sonar (2002) its
use as a refinement indicator for finite volume methods was compared with
the use of other powers of hT , and the use of more heuristic alternatives
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Figure 6.5. Grid after three refinement cycles with the unweighted
norm indicator (left). Pressure distribution on this grid (right).

which had been advocated by other authors, for a number of flow problems.
The simplest test problem was the very standard problem of the flow about
the NACA0012 aerofoil, in which the Mach number of the incoming flow is
Ma = 0.8 and the angle of attack is α = 1.25◦. The flow should contain a
strong shock on the upper side of the aerofoil and a weak one on the lower
side. The initial grid in the vicinity of the profile and also the whole grid
are shown in Figure 6.3. Note that the leading edge region of the profile is
already overly refined in this grid, which the present algorithms are unable
to correct. Using a second-order box method (i.e., a node-centred scheme
with continuous piecewise linear recovery, as described in earlier sections)
one obtains for the pressure distribution the results shown in Figure 6.4.
Note that although both shocks are visible, the weak lower side shock is
quite badly resolved.

Applying three refinement cycles using the unweighted L2-norm as the
refinement indicator results in the mesh shown in Figure 6.5. The corre-
sponding pressure distribution is shown on the right-hand side. The results
are undoubtedly much improved but there has been a lot of unnecessary
refinement around the leading edge.

For comparison, the grid after three refinement cycles with the weighted
L2-norm indicator and the corresponding Mach number distribution are
shown in Figure 6.6. There is clearly a much more appropriate refinement
of the mesh, resulting in a much better defined solution.

However, it was the use of the dual problem in the a posteriori analysis
of finite element approximations to elliptic equations that initially led to
the special place of the L2-norm. Developments for convection-diffusion
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Figure 6.6. Grid after three refinement cycles with the weighted
norm indicator; and the calculated Mach number distribution.

problems in Eriksson and Johnson (1993) and earlier papers then led to the
weighted norm (6.2). But it was less clear whether this should be carried
over to hyperbolic problems approximated by finite volume methods. Sonar
(1993b) therefore experimented with various alternatives to this norm: in
particular, there are theoretical arguments for using the weak norm

‖rh‖H−1(T ) := sup
Φ∈H1

0

|(rh, Φ)T |
‖Φ‖H1

0
(T )

,

where the supremum is taken over all H1
0 -functions on triangle T . To ap-

proximate this, each edge of each triangle was divided into four equal parts
and straight lines parallel to the edges drawn between them; their inter-
sections define three interior points of the triangle and thence three hat
functions Φi, i = 1, 2, 3, which take the value 1 at the subdivision node i
and 0 elsewhere. Then the weak norm is approximated by taking the max-
imum over these choices, rather than the supremum over all Φ ∈ H1

0 (T ).
Results obtained with this norm were never better than with the weighted
L2-norm, were more sensitive to chosen tolerances and in the NACA0012
problem led to unwarranted mesh refinement well away from the profile.

More recently, Süli and Houston (1997) have given a very clear account
of the Johnson (1994) paradigm, and then adopted an alternative but re-
lated approach for general finite element approximations to hyperbolic equa-
tions, together with an application to the cell-vertex method. These results
together with the success of the weighted L2-norm refinement indicator
have prompted further theoretical developments which we will describe next
before coming back to more extensive numerical tests. The analysis was first
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developed for the symmetric positive PDEs studied by Friedrichs (1958), and
now called Friedrichs systems; so we begin by putting the Euler equations
in this form.

6.3. Symmetrizing the Euler equations

It is part of the general theory of hyperbolic systems that they may be
symmetrized (i.e., put in a form in which the flux Jacobian matrices are
symmetric) by changing to entropy variables (Moch 1980), and this has been
exploited for the Euler equations by Hughes, Franca and Mallet (1986). In
the case of an ideal gas the entropy density is given by

η(u) := −ρs,

where s := ln(pρ−γ) denotes the thermodynamic entropy. We then intro-
duce new variables, the entropy variables, by means of the transformation

u �−→ U(u) := ∇uη(u). (6.3)

Explicitly, with the pressure p given by (2.13) and in terms of the primitive
variables, this has the form

U(u) =
γ − 1

p




p
γ−1(γ + 1 − s) − ρE

ρv1

ρv2

−ρ


 =:




U1

U2

U3

U4


, (6.4)

and the inverse mapping U �−→ u is given by

u(U) =
p

γ − 1




−U4

U2

U3

1 − 1
2

U2
2
+U2

3

U4


, (6.5)

where we now need to write p = p(U) in terms of the entropy variables.
Substituting for u in the Euler equations from (6.5), applying the chain
rule and using the notation A0(U) := ∇Uu, we can then write them as

A0(U)∂tU +
2∑

i=1

(∇ufi(u(U)))A0(U)∂xi
U = 0, (6.6)

which is in the form we are seeking.
Explicit expressions for A0 and its inverse A−1

0 were derived by Hughes
et al. (1986) and are given in Sonar and Süli (1998); they are quite com-
plicated and it is simplest to consider them via the intermediate system of
primitive variables, using the transformation (2.16). Fortunately, they are
not needed in order to show that all the coefficient matrices in this new
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form of the equations are symmetric: that is, if we write the system in the
compact notation

2∑

i=0

Ai(U)∂xi
U = 0, (6.7)

with x0 := t and in which Ai(U) := ∇ufi(u(U))A0(U) ≡ ∇Ufi, i = 1, 2,
these matrices and A0(U) are all symmetric 4×4 matrices. Following Sonar
and Süli (1998), to show that this is so we introduce the scalar quantities

r(U) = UTu − η, and si(U) = UT fi − qi, i = 1, 2,

where the qi are the entropy fluxes. Then it is easily seen that

∇Ur(U) = u + (∇Uu)TU − (∇Uu)T∇uη = u;

and in the same way, by making use of the relation (2.5) satisfied by the
entropy fluxes, we have

∇Usi(U) = fi + (∇Ufi)
TU − (∇Uu)T∇uqi = fi.

It follows that A0(U) ≡ ∇Uu is the Hessian of the scalar r and is therefore
symmetric: similarly, for i = 1, 2, Ai(U) ≡ ∇Ufi is the Hessian of the scalar
si and is therefore symmetric.

In order to carry forward the error analysis developed for Friedrichs sys-
tems, we next need to carry out a local linearization. This is done about
a constant mean state in each cell: that is, we assume the existence of a
constant state Uc ∈ R

4 such that the decomposition

U = Uc + V

holds for a small non-constant perturbation function V. It follows that

u(U) = u(Uc + V) = u(Uc) + ∇Uu(Uc)V + O(|V|2)
= u(Uc) + A0(Uc)V + O(|V|)2;

and in a similar way, with Fi(U) := fi(u(U)), we have

fi(u(U)) = Fi(Uc) + ∇ufi(u(Uc))A0(Uc)V + O(|V|2). (6.8)

Writing uc := u(Uc) and dropping the O(|V|2) terms, we then obtain the
symmetric system

A0(Uc)∂tV +
2∑

i=1

∇ufi(uc)A0(Uc)∂xi
V = 0, (6.9)

in which all matrix elements are constant. Finally, we write this in standard
form as

LEV :=
2∑

i=0

Ai(Uc)∂xi
V = 0, (6.10)
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where the Ai are given by

Ai(Uc) := ∇ufi(uc)A0(Uc), i = 1, 2. (6.11)

6.4. Dual graph-norm error indicators for Friedrichs systems

The a posteriori error analysis developed in Houston, Mackenzie, Süli and
Warnecke (1999) and earlier papers was for a more general Friedrichs system
than (6.10), as was that in Sonar and Süli (1998) where it was applied to the
Euler equations. In summarizing these presentations, we therefore consider
the system

LU :=

2∑

j=0

Aj(x)∂xj
U + C(x)U = 0, (6.12)

where x = (x0, x1, x2)
T := (t, x1, x2)

T is a space-time coordinate. Here the
matrices Aj are symmetric with Lipschitz-continuous elements, the matrix
C has continuous elements and we will assume that A0 is positive definite.
By assuming that it is symmetric positive definite in a region Ω we mean
that there exists a positive constant c0 ≡ c0(Ω) such that

1
2

(
K(x) + K∗(x)

)
≥ c0I, (6.13)

for all x ∈ Ω, where for some ξ ∈ R
3, with |ξ| = 1, the matrix K is defined

by

K := C − 1
2

2∑

j=0

∂xj
Aj +

2∑

j=0

ξjAj .

For the error analysis of such a system we need to distinguish the er-
ror generated within each cell and that transported from one cell to its
neighbours. So for the unsteady problem integrated over one time step we
consider a space-time prism Pn

i := (n∆t, (n+1)∆t)×Ti based on a triangle
Ti ∈ T h, and introduce the matrix

B(x) :=

2∑

j=0

njAj(x),

where n = (n0, n1, n2)
T denotes the unit outward normal vector to its

boundary ∂Pn
i at a point x. We suppose that B is non-singular at each

such point, i.e., ∂Pn
i is a non-characteristic hypersurface for the operator

L. Now we split B into a negative semi-definite part B− and a positive
semi-definite part B+ = B − B−. We call B−U the inflow part of the
vector field U and B+U its outflow part. Then it was shown in Friedrichs
(1958) and Lax and Phillips (1960) that symmetric hyperbolic systems have
unique strong solutions subject to a boundary condition that specifies B−U.
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Now suppose that our numerical approximation uh is converted into en-
tropy variables to give Uh. We consider the following boundary value prob-
lem in Pn

i :

LÛh = 0 on Pn
i

B−Ûh
∣∣
∂P n

i

= B−Uh
∣∣
∂P n

i

.

We interpret the function Ûh as the exact solution of (6.12) in Pn
i with

inflow boundary data contaminated by the transported error carried by Uh.
Hence we define the cell error by

ec ≡ ecell
P n

i
:= Uh − Ûh, (6.14)

being the error in the numerical solution which is produced on Pn
i ; while

the transported error is given by

et ≡ etrans
P n

i
:= Ûh − U. (6.15)

The sum of these two is the total error eP n
i
≡ Uh − U.

It is clear that the residual calculated in a given prism has no control
over the transported error, which is just advected into the cell from upwind:
while the cell error is governed directly by the residual via the relation

rh = LeP n
i

= Lecell
P n

i
≡ Lec on Pn

i , (6.16)

which is subject to a zero inflow boundary condition. Our next objective
then is to obtain two-sided bounds of the form (6.1) for the cell error and
cell residual. Note that this will only give some confidence in the overall
accuracy of a computation if the cell errors dominate the transported errors;
but in any case it should give a reliable indicator for local mesh refinement.

To develop such error bounds, it was shown in Houston et al. (1999) that
one can define the following spaces and their associated norms: for certain
weight functions wn

i , the weighted graph-norm ‖ · ‖D(L,P n
i ) on

D−(L, Pn
i ) := {φ ∈ L2(Pn

i ) |Lφ ∈ L2(Pn
i ), B−φ = 0 on ∂Pn

i },

is defined by

‖φ‖D(L,P n
i ) =

[
‖wn

i φ‖2
L2(P n

i ) + ‖wn
i Lφ‖2

L2(P n
i )

]1/2
,

and the associated dual graph-norm by

‖v‖D′(L,P n
i ) := sup

φ∈D−(L,P n
i )

|(v, φ)P n
i
|

‖φ‖D(L,P n
i )

,

where (·, ·)P n
i

denotes the usual L2 inner product on Pn
i . Similarly, by
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introducing the formal adjoint

L∗φ := −
2∑

j=0

∂xj
(Ajφ) + C∗φ,

with

φ ∈ D+(L∗, Pn
i ) := {φ ∈ L2(Pn

i ) |L∗φ ∈ L2(Pn
i ), B+φ = 0 on ∂Pn

i },

we can equip D+(L∗, Pn
i ) with a corresponding graph-norm and associated

dual graph-norm.
Establishing the necessary trace theorems in these spaces is a nontrivial

part of the analysis which goes on to establish the following local a posteriori

error bound.

Theorem 6.1. For the symmetric hyperbolic system (6.12), the cell error
satisfies the following inequalities:

(
min
P n

i

wn
i

)
‖rh‖D′(L∗,P n

i ) ≤ ‖ec‖L2(P n
i ) (6.17)

≤
(

1 +
1

c2
0

)1/2(
max
P n

i

wn
i

)
‖rh‖D′(L∗,P n

i ),

where c0 ≡ c0(P
n
i ) is as defined in (6.13).

Proof. See Sonar (2002) or Sonar and Süli (1998).

In order to exploit this theorem by calculating the dual graph-norm of
a residual on a space-time prism, we need first to consider the inflow and
outflow boundary conditions for the Euler equations. It is more convenient
to work with the unsymmetric form of the equations in the entropy variables
obtained by premultiplying (6.9) by A−1

0 . Thus, denoting the resultant

matrices by Ãj , we have

B̃(Pn
i ) =

2∑

j=0

njÃj ≡ n0I +
2∑

j=1

njA
−1
0 (Uci)∇ufj(uci)A0(Uci), (6.18)

where Uci,uci denote constant mean states of entropy and conservative
variables, respectively, within the prism Pn

i . Then, as above, we have the
inflow/outflow subdivision

B̃(Pn
i ) = B̃−(Pn

i ) + B̃+(Pn
i ).
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In particular, it is clear that the bottom of the prism is an inflow boundary
while the top is an outflow boundary.

For the sides, we note that the matrices Ãj are similar to ∇ufj , for j = 1, 2,

and Ã0 is similar to I; so each eigenvalue of B̃(Pn
i ) is given by

eig(B̃(Pn
i )) = n0 + eig

(
2∑

j=1

nj∇ufj(uci)

)
,

in terms of the eigenvalues of ∇ufj which were given in Section 2.3. Thus
we write

Λ(uci, n1, n2) := diag
{
vn, vn, vn + cci|(n1, n2)|, vn − cci|(n1, n2)|

}
,

where vn =
∑2

j=1 njvci,j is the flow speed in the normal direction and cci

is the mean constant speed of sound in Pn
i . We split Λ into a matrix

Λ+ containing the positive eigenvalues, and Λ− containing the negative
eigenvalues. So we finally have a representation for the boundary matrix
B̃(Pn

i ) in the form

B̃(Pn
i ) = n0I + A−1

0 (Uci)
[
PΛ+P−1(uci, n1, n2)

]
A0(Uci) (6.19)

+ A−1
0 (Uci)

[
PΛ−P−1(uci, n1, n2)

]
A0(Uci), (6.20)

where P (uci, n1, n2) is the matrix which diagonalizes
∑2

j=1 nj∇ufj(uci).
Note that this subdivision essentially corresponds to the flux vector splitting
of Steger and Warming (1981).

There are several ways in which these formulae may be approximated to
yield a practical refinement indicator. The simplest, whose use is reported
on in Sonar (2002), is based on using an explicit time-stepping procedure
so that divided differences are used instead of space-time basis functions
in the prisms Pn

i . Then the graph-norm calculation is approximated by
subdividing each triangle into 16 equal subtriangles, in the manner described
above in connection with calculating the weak H−1-norm. In this case we
obtain three interior nodes and twelve boundary nodes for each triangle,
giving 15 different test functions. Details of the calculation are given in
Sonar (2002).

The adaptive procedure using this graph-norm refinement indicator makes
use of two tolerances TOLrefine and TOLcoarse for the refinement and coars-
ening algorithms described above, and their choice in this case is quite
critical. A typical mesh obtained in the case of the transonic NACA0012
flow problem described earlier is shown in Figure 6.7. The flow features
are very well captured and the indicator has started to detect the super-
sonic region on the upper side. Another nice feature in comparison with the
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Figure 6.7. Grid after three refinement/coarsening
cycles with the graph-norm indicator for transonic
flow about the NACA0012 aerofoil.

H−1-indicator described above is the absence of any noise spoiling the grid
far away from the obstacle.

Although these and other results look quite promising there are several
problems associated with the dual graph-norm refinement indicator. First
of all, it is very expensive to compute in comparison with the weighted
L2-norm indicator. The second problem concerns its sensitivity: it turns
out that in some calculations a small change in tolerance can influence the
adapted grid enormously, which makes it hard to use in practice. This seems
to arise from the inability of the indicator to detect contact discontinuities.
Results which illustrate these points may be found in Sonar (2002).

6.5. Closing the loop and further tests

As claimed in Sonar and Süli (1998), the dual graph-norm error indicator
which was described in the previous subsection seems to have been the first
effective refinement indicator for the Euler equations with a sound mathe-
matical foundation. On the other hand it has several practical disadvantages
which were also indicated there. The more practical indicator would seem to
be that based on the weighted L2-norm, which gave the results in Figure 6.6.

It was therefore an important step towards resolving this dilemma when
the following result was proved in Houston et al. (1999): for positive con-
stants C and C ′ we have

C ′h0‖Ph0
rh‖L2(P n

i ) ≤ ‖ec‖L2(P n
i ) ≤ Ch‖rh‖L2(P n

i ), (6.21)
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weak recompression

shock

shock

contact discontinuityMach stem

Ma = 3

Figure 6.8. Flow phenomena in the
channel with forward facing step.

where h denotes the diameter of Pn
i , and Ph0

is the orthogonal projector
onto a finite element space on a micropartition of Pn

i of diameter h0. This
micropartition corresponds to that used for approximating the graph-norms
of the bounds in (6.17).

With this result we finally have a practical refinement indicator which
rests on a firm theoretical base. So we conclude this survey by giving some
results for the test problem due to Woodward and Colella (1984), which
we used earlier. This is actually an unsteady flow problem in which the
forward-facing step is inserted into a steady, uniform Ma = 3.0 flow down
the channel. A complicated shock system develops whose steady state is
sketched in Figure 6.8: note too the contact discontinuity which emerges
from the point where the bow shock joins the Mach stem attached to the
upper boundary.

Computations for this problem were carried out with the unsteady DLR-
τ -code of Sonar (1993a), Sonar, Hannemann and Hempel (1994) and Meister
(1994), and reported in Sonar (2002). In Figure 6.9 we show the meshes
that were generated at various times using the weighted L2-norm refinement
indicator. It is seen to have detected all the relevant flow phenomena: the
shock system is clearly visible, as is the contact discontinuity starting at
the Mach stem. Note that the corner point of the step is a true corner
singularity since it corresponds to the centre of a rarefaction wave: the
indicator has also detected phenomena associated with this special point
and refined the region in its vicinity. In Figure 6.10 we show the density
distributions obtained on these meshes.
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Figure 6.9. Adapted grids at different times
for the Woodward and Colella problem.
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Figure 6.10. Density distributions
corresponding to the grids in Figure 6.9.
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7. Concluding remarks

• Finite volume methods share with finite element methods the view-
point that it is primarily the solution that is being approximated,
rather than the equation or any operator in it.

• Their key guiding principle is exact satisfaction of the integral conser-
vation laws; so they are at their most effective where solutions contain
shocks or other discontinuities.

• Their advantage over evolution-Galerkin methods is that even explicit
methods need a less good approximation to the evolution operator
defined by the PDE as it is used only to calculate the fluxes.

• Limited as they are to using only piecewise constant functions as test
functions, with the consequential heavy dependence on the recovery
stage, they may well be superseded by discontinuous Galerkin methods,
but only when these methods recognize finite volume methods as their
proper antecedents and learn from them.

• The jury was out for a long time in the judgement between cell-centre
and cell-vertex methods; but it now seems that node-centred schemes
have acquired an edge over either. Cell-centre schemes still hold centre
stage as regards practical codes, because of their more reliable repre-
sentation of shocks as compared with cell-vertex methods. But node-
centred methods have advantages over cell-centre methods in regard
to generating hierarchies of recovery procedures.

• Although the ideal of a guaranteed error bound derived from an a pos-

teriori residual is still not achievable for finite volume computations of
nonlinear hyperbolic conservation laws, progress to that end during the
past decade has been quite remarkable: in particular, soundly based
practical mesh refinement indicators are now available.

• Further progress with these methods is likely to lie with implicit algo-
rithms, exploiting the techniques developed in the optimization field
for the rapid solution of large nonlinear systems of equations. This
is consistent with the practical requirement in aerodynamics that flow
calculations should be fully incorporated into the design cycle.
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